吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1709-1716.doi: 10.13229/j.cnki.jdxbgxb201505047
张文杰1, 熊庆宇2
ZHANG Wen-jie1, XIONG Qing-yu2
摘要: 依据图像区域的对比度以及空间位置等先验视觉显著性知识,进行了自下而上、数据驱动的图像显著性区域检测。首先,提取图像中的前景区域,构造区域的对比度、空间位置特征函数,然后融合这些特征计算显著图。该算法将图像的空间关系与区域关系联系起来,得到了较精确的显著图。通过对国际上现有的公开数据集MSRA-1000的测试结果表明:本文算法可以抑制非显著区域干扰,显著图的一致性较高。同时,将本文算法的显著图应用于分割显著性区域,能够得到较好的分割效果。
中图分类号:
[1] Jiang H, Wang J, Yuan Z, et al. Salient object detection: a discriminative regional feature integration approach[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2083-2090. [2] Jian M W, Dong J Y, Ma J. Image retrieval using wavelet-based salient regions[J]. Imaging Science Journal, 2011, 59(4): 219-231. [3] 李勇,陈贺新,耿晓东,等. 基于目标区域定位和特征融合的图像检索算法[J]. 吉林大学学报:工学版, 2008(增刊2):217-220. Li Yong, Chen He-xin, Geng Xiao-dong, et al. Image retrieval algorithm based on object region location and feature fusion[J]. Journal of Jilin University (Engineering and Technology Edition), 2008(Sup.2):217-220. [4] Rutishauser U, Walther D, Koch C, et al. Is bottom-up attention useful for object recognition?[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, 2004: 37-44. [5] Ko B C, Nam J. Object-of-interest image segmentation based on human attention and semantic region clustering[J]. JOSA A,2006, 23(10): 2462-2470. [6] Yang J, Yang M H. Top-down visual saliency via joint crf and dictionary learning[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, 2012: 2296-2303. [7] Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353-367. [8] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259. [9] Ma Y F, Zhang H J. Contrast-based image attention analysis by using fuzzy growing[C]∥Proceedings of the Eleventh ACM International Conference on Multimedia. ACM, New York, 2003: 374-381. [10] Harel J, Koch C, Perona P. Graph-based visual saliency[C]∥Advances in Neural Information Processing System,Vancouver,Canada,2007:545-552. [11] Hou X, Zhang L. Saliency detection: A spectral residual approach[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, 2007: 1-8. [12] Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, 2009: 1597-1604. [13] Stas Goferman, Lihi Zelnik-Manor, Ayellet Tal. Context-aware saliency detection[J]. IEEE Trans Pattern Anal Mach Intell,2012, 34(10): 1915-1926. [14] 黄志勇,何发智,蔡贤涛,等.一种随机的视觉显著性检测算法[J].中国科学:信息科学,2011,41(7):863-874. Huang Zhi-yong, He Fa-zhi, Cai Xian-tao, et al. Efficient random saliency map detection[J]. Science China Information Sciences, 2011, 41(7): 863-874. [15] 郭迎春,袁浩杰,吴鹏. 基于Local特征和Regional特征的图像显著性检测[J].自动化学报,2013,39(8):1214-1224. Guo Ying-Chun, Yuan Hao-Jie, WU Peng. Image saliency detection based on local and regional features[J]. Acta Automation Sinica,2013,39(8):1214-1224. [16] Liu Z, Zou W, Li L, et al. Co-Saliency detection based on hierarchical segmentation[J]. IEEE Signal Processing Letters, 2014, 21(1):88-92. [17] Fu H, Cao X, Tu Z. Cluster-based co-saliency detection[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2013, 22(10): 3766-3778. [18] Xie Y, Lu H, Yang M. Bayesian saliency via low and mid level cues[J].Transactions on Image Processing, 2013,22(5):1689-1698. [19] Cheng M M, Zhang G X, Mitra N J, et al. Global contrast based salient region detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 2011: 409-416. [20] Achanta R, Estrada F, Wils P, et al. Salient region detection and segmentation[C]∥6th International Conference on Computer Vision System,Santorini,Greece,2008:66-75. [21] Ohashi T, Aghbari Z, Makinouchi A. Hill-climbing algorithm for efficient color-based image segmentation[C]∥IASTED International Conference on Signal Processing, Pattern Recognition, and Applications,Rhodes, 2003: 17-22. [22] Li X, Lu H, Zhang L, et al. Saliency detection via dense and sparse reconstruction[C]∥IEEE International Conference on Computer Vision (ICCV), Sydney, 2013:2976-2983. [23] Yang C, Zhang L, Lu H, et al. Saliency detection via graph-based manifold ranking[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 3166-3173. [24] Lempitsky V, Kohli P, Rother C, et al. Image segmentation with a bounding box prior[C]∥IEEE International Conference on Computer Vision (ICCV), Kyoto, 2009: 277-284. [25] Grady L, Jolly M P, Seitz A. Segmentation from a box[C]∥IEEE International Conference on Computer Vision (ICCV), Barcelona, 2011: 367-374. [26] Einhäuser W, König P. Does luminance-contrast contribute to a saliency map for overt visual attention?[J]. European Journal of Neuroscience,2003, 17(5): 1089-1097. [27] Judd T, Ehinger K, Durand F, et al. Learning to predict where humans look[C]∥IEEE 12th International Conference on Computer Vision, Kyoto, 2009: 2106-2113. [28] 李茜. 图像的显著性特征提取[D]. 上海:上海大学通信与信息工程学院,2008. Li Qian. Saliency image feature extraction[D]. Shanghai:School of Communication and Information Engineering, Shanghai University, 2008. [29] Achanta R, Susstrunk S. Saliency detection using maximum symmetric surround[C]∥the 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, 2010: 2653-2656. [30] Zhai Y, Shah M. Visual attention detection in video sequences using spatiotemporal cues[C]∥Proceedings of the 14th Annual ACM International Conference on Multimedia. ACM, New York, 2006: 815-824. [31] Han J, Ngan K N, Li M, et al. Unsupervised extraction of visual attention objects in color images[J]. IEEE Transactions on Circuits and Systems for Video Technology,2006, 16(1): 141-145. [32] Rother C, Kolmogorov V, Blake A. Grabcut: interactive foreground extraction using iterated graph cuts[C]∥ACM Transactions on Graphics (TOG),ACM, New York, 2004:309-314. [33] Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND images[C]∥Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, 2001: 105-112. |
[1] | 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894. |
[2] | 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903. |
[3] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[4] | 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916. |
[5] | 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924. |
[6] | 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930. |
[7] | 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937. |
[8] | 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944. |
[9] | 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[10] | 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[11] | 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[12] | 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[13] | 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[14] | 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
[15] | 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639. |
|