吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 126-132.doi: 10.13229/j.cnki.jdxbgxb201601019

• • 上一篇    下一篇

基于可靠度的冻融循环下沥青路面性能

司伟1, 马骉1, 任君平1, 汪海年1, 格桑泽仁2   

  1. 1.长安大学 特殊地区公路工程教育部重点实验室,西安 710064;
    2.西藏自治区交通厅 交通科学研究所,拉萨 850000
  • 收稿日期:2013-09-25 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 马骉(1972-),男,教授,博士生导师.研究方向:路面结构与材料.E-mail:mb@gl.chd.edu.cn
  • 作者简介:司伟(1986-),男,博士研究生.研究方向:路面结构与材料.E-mail:siweichd@163.com
  • 基金资助:
    国家科技支撑计划项目(2014BAG05B04); 西部交通建设科技项目(2013318490010); 国家自然科学基金项目(51310105029)

Analysis of asphalt pavement performance under freeze-thaw cycles using reliability method

SI Wei1, MA Biao1, REN Jun-ping1, WANG Hai-nian1, GE-Sang Ze-ren2   

  1. 1.Key Laboratory of Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064, China;
    2.Institute of Traffic Science,Traffic Bureau of Tibet,Lhasa 850000,China
  • Received:2013-09-25 Online:2016-01-30 Published:2016-01-30

摘要: 在冻融循环试验的基础上,通过考虑影响因素的不确定性,对冻融作用下沥青路面结构的可靠性开展研究。采用冻融循环试验模拟了青藏高寒地区冻融作用对沥青混合性能的影响,建立了考虑冻融作用的路面结构强度可靠度方程,利用蒙特卡洛模拟方法对可靠度方程进行求解。研究得出:沥青混合料的抗压回弹模量在冻融作用下呈衰减趋势,初始冻融作用下混合料性能衰减较快,经历8~10次冻融循环后性能衰减趋于平缓;路面结构承载能力(可靠度)随冻融作用次数的增加呈衰减趋势,冻融作用对路面结构的可靠度有显著影响;路面结构可靠度随冻融循环变异系数的增加呈降低趋势。本文提出的考虑冻融作用的沥青路面可靠度分析方法可以较好地反映寒冷地区冻融作用对路面性能的影响。

关键词: 道路工程, 冻融循环, 可靠度分析, 蒙特卡洛模拟, 沥青混合料

Abstract: The reliability of the pavement structure under Freeze-Thaw (F-T) cycles is studied based on simulation test, in which various uncertainties of influence factors are taken into account. The impact of F-T cycles in Qinghai-Tibet cold region is simulated by F-T cycle test, and the reliability function of the asphalt pavement structure is built. Monte Carlo simulation method is employed to solve the reliability function. Analytical results show that the resilient modulus of asphalt concrete mixture declines under F-T cycles, the mixture performance decreases sharply in the initial F-T cycles and turns to gentle after 8 to 10 F-T cycles. The F-T cycle has significant impact on the reliability of the pavement structure, which decreases as F-T cycles increase. The reliability of the pavement structure also decreases as the coefficient of variance increases. An analysis method of the reliability of pavement structure under F-T cycles is proposed, which is useful to reflect the actual impact of F-T cycles on pavement performance in cold region.

Key words: road engineering, freeze thaw cycles, reliability analysis, Monte Carlo simulation, asphalt mixture

中图分类号: 

  • U416
[1] Zhang Zhan-min, Ivan Damnjanovi C. Applying method of moments to model reliability of pavements infrastructure[J]. Journal of Transportation Engineering, 2006, 132(5):416-424.
[2] Hong F, Prozzi J A. Estimation of pavement performance deterioration using Bayesian approach[J]. Journal of Infrastructure Systems, 2006, 12(2):77-86.
[3] Huang Y H. Pavement Analysis and Design[M]. 2nd ed. New Jersey: Prentice-Hall, 2004.
[4] 司伟,马骉,汪海年,等. 高原寒冷地区沥青混合料冻融循环作用下弯拉特性分析[J]. 吉林大学学报:工学版,2013,43(4): 885-890.
Si Wei, Ma Biao, Wang Hai-nian, et al. Analysis on compression characteristics of asphalt mixture under freeze-thaw cycles in cold plateau regions[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(4): 885-890.
[5] Feng D, Yi J, Wang D, et al. Impact of salt and freeze-thaw cycles on performance of asphalt mixtures in coastal frozen region of China[J]. Cold Regions Science and Technology, 2010, 62(1): 34-41.
[6] Kettil P, Engström G, Wiberg N E. Coupled hydro-mechanical wave propagation in road structures[J]. Computers and Structures, 2005, 83(21): 1719-1729.
[7] 马骉,韦佑坡,王磊,等. 高原寒冷地区沥青混合料弯拉特性分析[J]. 公路交通科技,2010, 27(3): 44-48.
Ma Biao, Wei You-po, Wang Lei, et al. Analysis on flexural tensile characteristics of asphalt mixture in cold plateau region[J]. Journal of Highway and Transportation Research and Development,2010,27(3): 44-48.
[8] Alsherri A, George K P. Reliability model for pavement performance[J]. Journal of Transportation Engineering, 1988, 114(3): 294-306.
[9] Roberts E M. Structural Reliability Analysis and Prediction[M]. 2nd ed. West Sussex, England: John Wiley & Sons, 1999.
[10] 国家气象局数据中心. 五道梁、沱沱河、安多地区地面气象资料三十年数据汇编[Z].北京:国家气象局数据中心,2003.
[11] Sundararajan C. Probabilistic Structural Mechanics Handbook[M]. New York: Chapman & Hall, 1995.
[12] Ditlevsen O, Madsen H O. Structural Reliability Methods[M]. Chichester: Wiley, 1996.
[13] Ang A H S, Tang W H. Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering[M]. 2nd ed. New York: Wiley, 2007.
[14] AASHTO. Resistance of compacted asphalt mixtures to moisture-induced damage[S]. Washington D C:AASHTO,1991.
[15] Goh S, Akin M, You Z, et al. Effect of deicing solutions on the tensile strength of micro- or nano-modified asphalt mixture[J]. Construction and Building Materials, 2011, 25(1): 195-200.
[16] M'hammed Merbouh. Effect of thermal cycling on the creep-recovery behaviour of road bitumen[J]. Energy Procedia, 2012, 18: 1106-1114.
[17] 侯曙光,李志栋,黄晓明,等. 利用冻融飞散试验进行沥青混合料抗冻性能评价[J]. 公路交通科技, 2006(2):7-10.
Hou Shu-guang, Li Zhi-dong, Huang Xiao-ming, et al. Asphalt mixture antifreeze capability evaluation using freezing-thawing and scattering loss test[J]. Journal of Highway and Transportation Research and Development, 2006(2):7-10.
[18] Washington S P, Karlaftis M G, Mannering F L. Statistical and Economic Methods for Transportation Data Analysis[M]. New York: Chapman & Hall, 2011.
[19] Greene W. Econometric Analysis[M]. 5th ed. Upper Saddle River: Prentice-Hall, 2002.
[20] Hussain U,Bahia Bosscher P J, Christensen J, et al. Layer coefficients for new and reprocessed asphaltic mixes. No. WI/SPR-04-00[R]. Wisconsin Dept. of Transportation, Division of Transportation Infrastructure Development, Bureau of Highway Construction, Technology Advancement Unit, 2000.
[21] Vighnesh P Deshpande, Damnjanovic Ivan D, Gardoni Paolo. Modeling pavement fragility[J]. Journal of Transportation Engineering, 2009, 136(6): 592-596.
[1] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[2] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] 张仰鹏, 魏海斌, 贾江坤, 陈昭. 季冻区组合冷阻层应用表现的数值评价[J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[7] 季文玉, 李旺旺, 过民龙, 王珏. 预应力RPC-NC叠合梁挠度试验及计算方法[J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[8] 马晔, 尼颖升, 徐栋, 刁波. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] 罗蓉, 曾哲, 张德润, 冯光乐, 董华均. 基于插板法膜压力模型的沥青混合料水稳定性评价[J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] 尼颖升, 马晔, 徐栋, 李金凯. 波纹钢腹板斜拉桥剪力滞效应空间网格分析方法[J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] 郑传峰, 马壮, 郭学东, 张婷, 吕丹, 秦泳. 矿粉宏细观特征耦合对沥青胶浆低温性能的影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] 于天来, 郑彬双, 李海生, 唐泽睿, 赵云鹏. 钢塑复合筋带挡土墙病害及成因[J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] 蔡氧, 付伟, 陶泽峰, 陈康为. 基于扩展有限元模型的土工布防荷载型反射裂缝影响分析[J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] 刘寒冰, 张互助, 王静. 失水干燥对路基压实黏质土抗剪强度特性的影响[J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[15] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!