吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 311-317.doi: 10.13229/j.cnki.jdxbgxb201601047

• • 上一篇    下一篇

基于活跃度的图像分割算法性能评价新方法

郑欣, 彭真明, 邢艳   

  1. 电子科技大学 光电信息学院, 四川 成都 610054
  • 收稿日期:2014-05-20 出版日期:2016-01-30 发布日期:2016-01-30
  • 作者简介:郑欣(1981-),男,博士研究生.研究方向:数字图像处理、目标识别与跟踪.E-mail:zheng_xin2@sina.com
  • 基金资助:
    国家自然科学基金项目(61308102); 中国科学院光束控制重点实验室基金项目(2010LBC001)

Novel method of evaluating image segmentation algorithms based on activity degree

ZHENG Xin, PENG Zhen-ming, XING Yan   

  1. School of Opto-Electronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China
  • Received:2014-05-20 Online:2016-01-30 Published:2016-01-30

摘要: 针对优度法在评价图像分割算法性能时忽略了图像质量对算法性能影响这一不足,分析了图像中影响分割算法性能的因素,并提出用图像活跃度定量描述上述因素。在此基础上,构造了一种基于图像质量的分割算法性能评价方法,即加权优度法。实验表明,加权优度法对分割结果的评价值与主观评价的一致性程度比优度法更高,评价结果与图像质量间的单调性也更好,证明了本文方法的有效性。

关键词: 信息处理技术, 图像分割, 性能评价, 图像活跃度, 加权优度法

Abstract: The excellent degree method is widely used in performance evaluation of image segmentation algorithms. However, this method ignores the influence of image quality. Hence, the results have no reference value to the overall performance evaluation of the segmentation algorithm or the comparison of different segmentation algorithms. To solve this problem, the image factors interfering with the performance of the segmentation algorithms were analyzed. Then, the metric Activity Degree of Image (ADI) was proposed to quantify these factors. Finally, based on the ADI, a performance evaluation method of the image segmentation algorithms was developed, named Weighted Excellent Degree (WED) method. Experiment results show that, compared with the current evaluation method, the WED method has higher consistency degree between evaluation results and subjective assessment, and better monotonicity between evaluation results and image qualities. Thus, the proposed WED method is more effective in performance evaluation of image segmentation algorithms than the current evaluation method.

Key words: information processing, image segmentation, performance evaluation, activity degree of image, weighted excellent degree

中图分类号: 

  • TN911.73
[1] 贺飞跃,田铮,付辉敬,等. 带边缘惩罚和自适应权马尔科夫随机场的合成孔径雷达图像快速分割[J]. 光学学报, 2013, 33(8): 1-8.
He Fei-yue, Tian Zheng, Fu Hui-jing, et al. Models with edge penalties and an adaptive weighting parameter[J]. Acta Optica Sinica, 2013, 33(8): 1-8.
[2] 赵于前,杨元,王琨. 基于模糊集理论的迭代多值化图像分割[J]. 光电子激光, 2009, 20(10): 1403-1409.
Zhao Yu-qian, Yang Yuan, Wang Kun. Iterative multi-level image segmentation based on fuzzy set theory[J]. Journal of Optoelectronics Laser, 2009, 20(10): 1403-1409.
[3] 于海晶,李桂菊. 基于改进差分盒维数的烟雾分割方法[J]. 液晶与显示, 2013, 28(1): 115-119.
Yu Hai-jing, Li Gui-ju. Smoke segmentation method based improved differential box-counting fractal on dimension[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(1): 115-119.
[4] 赵东, 赵宏伟, 于繁华. 动态多目标优化的运动物体图像分割[J].光学精密工程, 2015, 23(7): 2109-2116.
Zhao Dong, Zhao Hong-wei, Yu Fan-hua. Moving object image segmentation by dynamic multi-objective optimization[J]. Optics and Precision Engineering, 2015, 23(7): 2109-2116.
[5] 李晓峰,杨艳芳,秦勇. 基于小波域的模糊化区域竞争模型的图像分割方法[J]. 光电子激光, 2013, 24(2): 391-396.
Li Xiao-feng, Yang Yan-fang, Qin Yong. Image segmentation method based on fuzzy region competition model in wavelet domain[J]. Journal of Optoelectronics Laser, 2013, 24(2): 391-396.
[6] 郑欣,彭真明. 基于活跃度的脉冲耦合神经网络图像分割[J]. 光学精密工程, 2013, 21(3): 821-827.
Zheng Xin, Peng Zhen-ming. Image segmentation based on activity degree with pulse coupled neural networks[J]. Optics and Precision Engineering, 2013, 21(3): 821-827.
[7] 彭真明,蒋彪,肖峻.基于并行点火PCNN模型的图像分割新方法[J]. 自动化学报, 2008, 34(9): 1169-1173.
Peng Zhen-ming, Jiang Biao, Xiao Jun. A novel method of image segmentation based on parallelized firing PCNN[J]. Acta Automatica Sinica, 2008, 34(9): 1169-1173.
[8] Unnikrishnan R, Pantofaru C, Hebert M. Toward objective evaluation of image segmentation algorithms[J]. IEEE Trans PAMI, 2007, 29(6): 929-944.
[9] 刘春燕.图像分割评价方法研究[D]. 西安:西安电子科技大学电子工程学院, 2011.
Liu Chun-yan. Survey on evaluation methods of image segmentation algorithms[D]. Xi'an: School of Electronic Engineering,XiDian University, 2011.
[10] 黄锐,桑农,罗大鹏,等.融合感知一致程度的图像分割评价方法[J]. 华中技大学学报:自然科学版, 2010, 38(10): 52-56.
Huang Rui, Sang Nong, Luo Da-peng, et al. Method to evaluate image segmentation via fused perceptual consistency degree[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2010, 38(10): 52-56.
[11] Yang A, Wright J, Sastry S, et al. Unsupervised segmentation of natural images via lossy data compression[J]. Comput Vis Image Understand, 2008, 110(2): 212-225.
[12] Yin Peng-yeng. Multi-level minimum cross entropy threshold selection based on particle swam optimization[J]. Applied Mathematics and Computation, 2007, 184(2): 503-513.
[13] 张煜东,吴乐南.基于二维Tsallis熵的改进PCNN图像分割[J].东南大学学报:自然科学版, 2008, 38(4): 579-584.
Zhang Yu-dong, Wu Le-nan. Image segmentation based on 2D Tsallis entropy with improved pulse coupled neural networks[J]. Journal of Southeast University(Natural Science Edition),2008,38(4):579-584.
[14] Stewart R D, Fermin I, Opper M. Region growing with pulse-coupled neural networks: An alternative to seeded region growing[J]. IEEE Transaction on Neural Networks, 2002, 13(6): 1557-1562.
[15] 张健, 李宏升. 基于图论阈值算法的图像分割研究[J].液晶与显示, 2014,29(4): 592-597.
Zhang Jian, Li Hong-sheng. Image mosaic research based on wavelet and rough set algorithm[J]. Chinese Journal of Liquid Crystals and Displays,2014,29(4): 592-597.
[16] Diao W H, Mao X, Gui V. Metrics for performance evaluation of preprocessing algorithms in infrared small target images[J]. Progress in Electromagnetics Research, 2011, 115: 35-53.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!