吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 418-425.doi: 10.13229/j.cnki.jdxbgxb201602013

• 论文 • 上一篇    下一篇

基于瞳孔直径的撞固定物冲突自反馈识别方法

李世武, 徐艺, 孙文财, 王琳虹, 郭梦竹, 柴萌   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2014-11-12 出版日期:2016-02-20 发布日期:2016-02-20
  • 通讯作者: 孙文财(1981-),男,副教授,博士.研究方向:交通环境与安全技术.E-mail:swcai@163.com E-mail:lshiwu@163.com
  • 作者简介:李世武(1971-),男,教授,博士生导师.研究方向:交通环境与安全技术.E-mail:lshiwu@163.com
  • 基金资助:

    国家自然科学基金青年基金项目(51308250,51308251); 吉林大学科学前沿与交叉学科项目(2013ZY06); 中国博士后科学基金面上项目(2013M530984,2013M541306); 吉林省科技发展计划重点项目(20140204021SF); 吉林省交通运输科技项目(2014-1-3); 中国博士后基金特别资助项目(2014T70292); 高等学校博士学科点专项科研基金项目(20120061120043); 吉林大学研究生创新研究计划项目(2014054); 吉林大学竞业杯研究生创新创业项目(2014CXCY032)

Pupil diameter based construction conflict self-feedback discrimination method

LI Shi-wu, XU Yi, SUN Wen-cai, WANG Lin-hong, GUO Meng-zhu, CHAI Meng   

  1. College of Transportation, Jilin University, Changchun 130022, China
  • Received:2014-11-12 Online:2016-02-20 Published:2016-02-20

摘要:

以寻找可反映驾驶人心理负荷的交通冲突识别指标及基于该指标的交通冲突识别方法为目的,通过比较分析明确了冲突刺激与瞳孔直径的相关关系.基于交通冲突领域对瞳孔直径的研究现状,针对常规模板识别需要过多人工干预,识别效率低下的缺陷,提出了基于瞳孔直径的撞固定物冲突自反馈识别方法.撞固定物冲突验证结果显示,自反馈识别方法误判率为5.56%,无反馈识别方法误判率为24.44%,证明自反馈识别方法具有较高的识别精度且无需人工干预,可满足现阶段交通冲突识别和道路安全评价的要求,为后续交通冲突严重程度-瞳孔直径关系研究以及基于驾驶人眼动特征的交通冲突量化体系构建奠定基础.

关键词: 交通运输工程, 交通冲突技术, 自反馈识别方法, 驾驶人, 瞳孔直径, 撞固定物冲突

Abstract:

In order to find traffic conflict discrimination indicator, which can reflect the driver's mental load, and to establish the traffic conflict discrimination method based on the indicator, the correlation between the conflict stimuli and the pupil diameter is determined by comparative analysis. A pupil diameter based construction conflict self-feedback discrimination method is proposed based on the research of the influence of traffic conflict on the pupil diameter. This method overcomes the shortcomings of normal template discrimination method, including too much manual intervention and lower discriminating efficiency. Construction conflict discrimination results show that the error rate of the self-feedback method is 5.56%, and the error rate of the non-feedback method is 24.4%, thus, the high discrimination precision and no manual intervention of the self-feedback discrimination method are testified. The proposed method can meet the present requirements of traffic conflict discrimination and road safety evaluation. This work lays foundation for further study of relationship between traffic conflict severity and pupil diameter, and to build traffic conflict quantification system based on driver's eye movement characteristics.

Key words: traffic and transportation engineering, traffic conflict technique, self-feedback discrimination method, driver, pupil diameter, construction conflict

中图分类号: 

  • U491
[1] 张苏.中国交通冲突技术[M]. 成都: 西南交通出版社, 1998.
[2] 郭伟伟,曲昭伟,王殿海.交通冲突判别模型[J].吉林大学学报:工学版,2011,41(1):35-40.
Guo Wei-wei,Qu Zhao-wei,Wang Dian-hai.Traffic conflict discrimination model[J].Journal of Jilin University(Engineering and Technology Edition),2011,41(1):35-40.
[3] 孟祥海, 徐汉清, 王浩, 等. 基于 TTC 及 DRAC 的高速公路施工区追尾冲突研究[J]. 交通信息与安全, 2012, 30(6): 6-10.
Meng Xiang-hai, Xu Han-qing, Wang Hao, et al. Rear-end conflict of freeway work zone based on TTC and DRAC[J]. Journal of Transportation Information and Safety, 2012, 30(6): 6-10.
[4] 徐汉清. 基于碰撞时间的侧向冲突指标计算模型研究[J]. 城市道桥与防洪, 2014 (6): 268-271.
Xu Han-qing. Study of side crash conflict index calculating model based on time to collision(TTC)[J]. City Bridges & Flood, 2014 (6): 268-271.
[5] 巴布可夫.道路条件与交通组织[M].祁振庆,译.北京:中国建筑工业出版社,1983.
[6] Fu C Y, Pei Y L. Analysis on driver's physiological and eye movement characteristics under alcohol effect[J].Advanced Engineering Forum,2012(5): 138-143.
[7] Neumann D L, Lipp O V. Spontaneous and reflexive eye activity measures of mental workload[J]. Australian Journal of Psychology, 2002, 54(3): 174-179.
[8] Einhäuser W, Stout J, Koch C, et al. Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry[J]. Proceedings of the National Academy of Sciences, 2008, 105(5): 1704-1709.
[9] Steinhauer S R, Siegle G J, Condray R, et al. Sympathetic and parasympathetic innervation of pupillary dilation during sustained processing[J]. International Journal of Psychophysiology, 2004, 52(1): 77-86.
[10] Winn B, Whitaker D, Elliott D B, et al. Factors affecting light-adapted pupil size in normal human subjects[J]. Investigative Ophthalmology & Visual Science, 1994, 35(3): 1132-1137.
[11] Pedrotti M, Mirzaei M A, Tedesco A, et al. Automatic stress classification with pupil diameter analysis[J]. International Journal of Human-Computer Interaction, 2014, 30(3): 220-236.
[12] Guan Hai-yan, Zhang Jian-qing, Hu Qi, et al. Line extraction of industrial parts based on least square template matching[C]//Proceedings of 1st International Congress on Image and Signal Processing,United States, 2008: 696-700.
[13] Wu Di-jia, Liu D, Puskas Z, et al. A learning based deformable template matching method for automatic rib centerline extraction and labeling in CT images[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,United States, 2012: 980-987.
[14] 罗石贵,周伟. 路段交通冲突技术研究[J]. 公路交通科技, 2001,18(1):65-68.
Luo Shi-gui, Zhou Wei. Research on road traffic conflict technique[J]. Journal of Highway and Transportation Research and Development, 2001,18(1):65-68.
[15] 罗石贵, 周伟. 路段交通冲突的调查技术[J]. 长安大学学报: 自然科学版, 2003, 23(1): 71-75.
Luo Shi-gui, Zhou Wei. Survey way of road-traffic-conflict technique[J]. Journal of Chang'an University (Natural Science Edition), 2003, 23(1): 71-75.
[16] Machhale K S, Zode Pradnya P, Zode Pravin P. Implementation of number recognition using adaptive template matching and feature extraction method[C]//Proceedings-International Conference on Communication Systems and Network Technologies,Rajkot, 2012: 194-197.
[17] 聂海涛, 龙科慧, 马军,等. 采用改进尺度不变特征变换在多变背景下实现快速目标识别[J]. 光学精密工程, 2015, 23(8): 2349-2356.
Nie Hai-tao, Long Ke-hui, Ma Jun, et al. Fast object recognition under multiple varying background using improved SIFT method[J].Optics and Precision Engineering, 2015, 23(8): 2349-2356.
[18] Zhu Wei, Yao Li-xiu. Facial feature extraction based on template matching searching[J]. Journal of Shanghai Jiaotong University, 2009,43(12): 1858-1862.
[19] 董晓庆, 陈洪财. 基于子模式双向二维线性判别分析的人脸识别[J]. 液晶与显示, 2015, 30(6): 1016-1023.
Dong Xiao-qing, Chen Hong-cai. Face recognition based on sub-pattern two-directional two-dimensional linear discriminant analysis[J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(6): 1016-1023.
[20] Hao Ming, Deng Ka-zhong, Zhang Hua. An improved active contour model to extract buildings based on remotely sensed data[J]. Journal of China University of Mining and Technology, 2012, 41(5): 833-838.
[21] 马艳.基于颜色与模板匹配的人脸检测方法[D].大连:大连理工大学控制科学与工程学院, 2006.
Ma Yan. A face detection method based on color and template matching[D]. Dalian:School of Control Science and Engineering,Dalian University of Technology, 2006.
[22] 李世武, 徐艺, 孙文财, 等. 基于自反馈模板提取的车辆遥感图像识别[J]. 华南理工大学学报: 自然科学版, 2014, 42(5): 97-102.
Li Shi-wu, Xu Yi, Sun Wen-cai, et al. A vehicle remote sensing image recognition method based on self-feedback template extraction[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(5): 97-102.
[23] 武治国, 李桂菊. 动态目标识别中的实时复杂巡航场景运动检测[J]. 2014, 29(5) 844-849.
Wu Zhi-guo, Li Gui-ju. Real-time complex cruise scene detection technology in target recognition[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(5) 844-849.
[1] 徐洪峰, 高霜霜, 郑启明, 章琨. 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报(工学版), 2018, 48(2): 430-439.
[2] 李显生, 孟凡淞, 郑雪莲, 任园园, 严佳晖. 基于应激响应的驾驶人视觉特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1403-1410.
[3] 李显生, 李明明, 郑雪莲, 任园园. 少量酒精作用下车辆制动性及驾驶人注视特性分析[J]. 吉林大学学报(工学版), 2017, 47(2): 408-413.
[4] 王海玮, 温惠英, 刘敏. 夜间环境驾驶员精神负荷的生理特性评估与实验[J]. 吉林大学学报(工学版), 2017, 47(2): 420-428.
[5] 李显生, 李明明, 任有, 严佳晖, 陈小夏. 城市不同道路线形下的驾驶人注视特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1447-1452.
[6] 姜桂艳, 刘彬, 隋晓艳, 马明芳. 基于IC卡收费系统的公交客流信息实时采集方法[J]. 吉林大学学报(工学版), 2016, 46(4): 1076-1082.
[7] 宗芳, 王占中, 贾洪飞, 焦玉玲, 吴杨. 基于支持向量机的通勤日活动-出行持续时间预测[J]. 吉林大学学报(工学版), 2016, 46(2): 406-411.
[8] 潘义勇, 马健霄, 孙璐. 基于可靠度的动态随机交通网络耗时最优路径[J]. 吉林大学学报(工学版), 2016, 46(2): 412-417.
[9] 赵淑芝, 梁士栋, 马明辉, 刘华胜, 朱永刚. 信号交叉口实时排队长度估计[J]. 吉林大学学报(工学版), 2016, 46(1): 85-91.
[10] 李鹏辉, 张文会, 胡孟夏, 李一兵, 吴彪. 高速公路驾驶人超车过程中的扫视行为[J]. 吉林大学学报(工学版), 2016, 46(1): 114-119.
[11] 马勇, 石涌泉, 付锐, 郭应时. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1095-1101.
[12] 刘华胜,赵淑芝,朱永刚,李晓玉. 基于有效路径的轨道交通接运线路设计模型[J]. 吉林大学学报(工学版), 2015, 45(2): 371-378.
[13] 祝进城,肖峰,帅斌,刘晓波. 城市出租车拥挤收费[J]. 吉林大学学报(工学版), 2015, 45(1): 89-96.
[14] 高振海, 吴涛, 赵会. 车辆虚拟跟随避撞中驾驶人制动时刻模型[J]. 吉林大学学报(工学版), 2014, 44(5): 1233-1239.
[15] 游峰, 张荣辉, 王海玮, 徐建闽, 温惠英. 欠驱动半挂汽车列车的运动建模与跟踪控制[J]. 吉林大学学报(工学版), 2014, 44(5): 1296-1302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!