吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 602-608.doi: 10.13229/j.cnki.jdxbgxb201602039
丁宁1, 2, 李海彬1, 2, 彭乐立1, 2, 余芝帅1, 2, 常玉春1, 2
DING Ning1, 2, LI Hai-bin1, 2, PENG Le-li1, 2, YU Zhi-shuai1, 2, CHANG Yu-chun1, 2
摘要: 为了实现在不增编码器体积和码盘刻线数的前提下提高中低精度小型光电编码器分辨力,设计了一种适用于小型光电编码器的细分芯片.首先,分析目前电子学细分方法的优缺点,折中分辨率,精度,电路复杂性和可集成性等因素,在相位调制理论基础上提出了把对空间相位位移的测量转化为对瞬时周期时间差值的测量的细分算法,并结合算法原理进行芯片架构总体设计.其次,利用Cadence软件设计了信号细分处理芯片的各个模块电路.然后,对芯片总体电路进行仿真得到调制信号瞬时周期值.最后,将细分后的测量角位移结果与理论基准值对比,并计算最终细分精度.实验结果表明:当光电编码器信号输入在1~100 kHz频率范围内,该细分芯片可以实现对光电信号的0~100倍细分.在输入100 kHz时细分精度达到0.4571'.与同类处理电路相比具有集成度高,细分辨向功能统一,可移植性好等特点,有一定的工程应用价值.
中图分类号:
[1] 王显军.光电轴角编码器细分信号误差及精度分析[J].光学精密工程,2012,20(2):379-386. Wang Xian-jun. Errors and precision analysis of subdivision signals for photoelectric angle encoders[J]. Optics and Precision Engineering,2012,20(2):379-386. [2] Yang Ning. Design and realization of timely auto-detection based on high-precision photoelectric encoder[C]//Instrumentation, Measurement, Computer, Communication and Control (IMCCC),Harbin,2012:147-149. [3] 董莉莉,熊经武,万秋华.光电轴角编码器的发展动态[J].光学精密工程,2000,8(2):198-202. Dong Li-li, Xiong Jing-wu, Wan Qiu-hua. Development of photoelectric rotary encoders[J]. Optics and Precision Engineering, 2000,8(2):198-202. [4] Kress B. Motion and position sensors for the auto-motive industry[C]//SPIE,Boston,MA,USA,2006:63790G. [5] Warner M, Krabbendam V, Schumacher G. Adaptive periodic error correction for Heidenhain tape encoders[C]//SPIE, Krabbendam,Holland,2008:70123. [6] 赵长海.高精度光电编码器动态细分误差的测量方法研究[D]. 北京:中国科学院,2008. Zhao Chang-hai. The research of measure method of dynamic interpolation errors of high precision photoelectric encoder[D]. Beijing: Graduate University of the Chinese Academy of Sciences, 2008. [7] Leviton D B. Ultra-high resolution, absolute, Cartesian electronic auto-collimator[C]//Proceedings of SPIE, Recent Developments in Traceable Dimensional Measurements,San Diego,California,USA,2003:468-475. [8] Hoseinnezhad R R,Bab-Hadiashar A,Harding P.Calibration of resolver sensors in electromechanical braking systems: a modified recursive weighted least-squares approach[J].IEEE Transactions on Industrial Electronics, 2007,54(2):1052-1060. [9] 冯英翘,万秋华,孙莹. 小型光电编码器的高分辨力细分技术[J]. 红外与激光工程,2013,42(7):1825-1830. Feng Ying-qiao, Wan Qiu-hua, Sun Ying. High resolution interpolation techniques of small photoelectric encoder[J]. Infrared and Laser Engineering, 2013, 42(7): 1825-1830. [10] Breslow D H. High-performance optical encoders can have SmallSige,Weiht,and Cost[J].Electro-Optical System Design,1981,13(9):21-38. [11] 刘杨,吕恒毅,谭立国,等.光电编码器信号处理技术的研究与进展[J].自动化仪表,2011,32(3): 16-20. Liu Yang, Lyu Heng-yi, Tan Li-guo,et al. Resarching development of photoelectric encoder signal process technology[J]. Rrocess Automation Instrumentation, 2011, 32(3): 16-20. |
[1] | 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909. |
[2] | 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875. |
[3] | 杨越东, 陈吉清, 兰凤崇, 周云郊. 基于焊点参数识别的白车身动态特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1379-1386. |
[4] | 康利鸿, 田菁, 孙希龙, 张晔. 目标电磁散射特性对高分辨率星载SAR图像仿真影响[J]. 吉林大学学报(工学版), 2017, 47(5): 1661-1668. |
[5] | 申帅, 张葆, 李贤涛, 朱枫, 晋超琼. 基于跟踪微分器的加速度反馈控制[J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224. |
[6] | 鄢永耀, 刘伟, 付锦江. 高定位精度转台检测系统调整误差补偿[J]. 吉林大学学报(工学版), 2017, 47(3): 855-860. |
[7] | 申茂冬, 程德福, 安战峰, 王一, 赵静. 五棱台式全张量磁梯度探头侧面倾角优化方法[J]. 吉林大学学报(工学版), 2016, 46(5): 1732-1738. |
[8] | 王健健, 冯平法, 张建富, 吴志军, 张国斌, 闫培龙. 卡盘定心精度建模及其保持特性与修复方法[J]. 吉林大学学报(工学版), 2016, 46(2): 487-493. |
[9] | 林君, 赵越, 蒋川东, 李同, 刘孝男. 基于Hammer积分的三维地面磁共振高精度正演方法[J]. 吉林大学学报(工学版), 2016, 46(2): 609-615. |
[10] | 高明亮, 于生宝, 郑建波, 徐畅, 张堃, 栾卉. PSBP在高密度电阻率法二维反演中的应用[J]. 吉林大学学报(工学版), 2015, 45(6): 2026-2033. |
[11] | 王京萌, 张爱武, 赵宁宁, 孟宪刚. 斜采样的倾斜角度对采样产生混叠的影响及其与分辨率的关系[J]. 吉林大学学报(工学版), 2015, 45(3): 953-960. |
[12] | 曹建农, 郭佳, 王蓓, 董昱威, 王平禄. 高分辨率影像中城区树冠多尺度聚类识别方法[J]. 吉林大学学报(工学版), 2014, 44(4): 1215-1224. |
[13] | 司伟建, 吴迪, 陈涛. 基于部分重合信号的空间谱估计新方法[J]. 吉林大学学报(工学版), 2014, 44(2): 490-496. |
[14] | 吕国皎, 王琼华. 全分辨率的低串扰时分复用狭缝光栅3D显示[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 295-298. |
[15] | 卜莎莎, 章毓晋. 基于局部约束线性编码的单帧和多帧图像超分辨率重建[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 365-370. |
|