吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1868-1875.doi: 10.13229/j.cnki.jdxbgxb201706027

• 论文 • 上一篇    下一篇

基于强跟踪卡尔曼滤波的陀螺信号处理

朱枫1, 2, 3, 张葆1, 2, 李贤涛1, 2, 王正玺1, 2, 3, 张士涛1, 2, 3   

  1. 1.中国科学院 长春光学精密机械与物理研究所,长春 130033;
    2.中国科学院 航空光学成像与测量重点实验室,长春 130033;
    3.中国科学院大学,北京 100049
  • 收稿日期:2016-08-24 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 张葆(1966-),男,研究员,博士.研究方向:航空光电成像技术.E-mail:zcleresky@vip.sina.com
  • 作者简介:朱枫(1992-),女,博士研究生.研究方向:航空光电稳定平台视轴稳定技术.E-mail:zf0109@126.com
  • 基金资助:
    “863”国家高技术研究发展计划重点项目(2013AA122102)

Gyro signal processing based on strong tracking Kalman filter

ZHU Feng1, 2, 3, ZHANG Bao1, 2, LI Xian-tao1, 2, WANG Zheng-xi1, 2, 3, ZHANG Shi-tao1, 2, 3   

  1. 1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
    2.Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences,Changchun 130033,China;
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-08-24 Online:2017-11-20 Published:2017-11-20

摘要: 针对陀螺传感器测量精度低,严重影响航空光电稳定平台视轴稳定精度的问题,设计了强跟踪卡尔曼滤波器。根据时间序列分析法的基本原理,对经过预处理的陀螺原始量测数据进行AR模型建模,根据该AR模型采用状态空间法设计卡尔曼滤波器,同时为了增强系统的鲁棒性,引入强跟踪算法对卡尔曼滤波中的状态预测方差进行实时调整,构造了强跟踪卡尔曼滤波器。阐述了该算法的理论、原理,并且在某型航空光电稳定平台上进行试验验证。试验结果表明:强跟踪卡尔曼滤波器输出信号的方差减少了44.1%,分散程度降低,同时,相较于巴特沃斯滤波器,最大超调量减少13%,上升时间缩短了3 ms,调整时间缩短了37.5 ms,使平台具有良好的动态性能。研究表明,强跟踪卡尔曼滤波器可以提高航空光电稳定平台的精度,有较高的实用价值。

关键词: 自动控制技术, 视轴稳定精度, 强跟踪卡尔曼滤波, 陀螺传感器

Abstract: To overcome the problem that the low measuring precision of the gyroscope leads to degradation of Line of Sight (LOS) stabilization accuracy of photoelectric stabilized platform for aviation, a strong tracking Kalman filter was designed. According to the principle of the time sequence analysis from the random series, Autoregressive method (AR) was adopted to model the preprocessed data measured by the gyroscope. The state-space method was used to design the Kalman filter. In the meantime, in order to increase the control system's robustness, the strong tracking algorithm was introduced to correct the variance of state prediction in real time to construct the strong tracking Kalman filter. The theory and principle of the algorithm were described and applied to the photoelectric stabilized platform for aviation. The results show that the variance of signal was reduced by 44.1% after filtering using the strong tracking Kalman filter, and the dispersion was apparently reduced. At the same time, comparing with the Butterworth filter, the strong tracking Kalman filter shortens the overshoot by 13%, cut down the rise time by 3 ms, shortens the regulation time by 37.5 ms, keeps the platform in good dynamic properties. The study indicated that the strong tracking Kalman filter has strong application value.

Key words: automatic control technology, LOS stabilization accuracy, strong tracking Kalman filter, gyroscope

中图分类号: 

  • TP273
[1] 魏伟,戴明,李嘉全, 等. 航空光电稳定平台的自抗扰控制系统[J]. 光学精密工程,2015,23(8):2296-2305.
Wei Wei, Dai Ming,Li Jia-quan, et al. ADRC control system for airborne opto-electronic platform[J]. Optics and Precision Engineering,2015,23(8):2296-2305.
[2] 李贤涛,张葆,沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学精密工程,2014,22(8):2223-2231.
Li Xian-tao, Zhang Bao, Shen Hong-hai. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Optics and Precision Engineering,2014,22(8):2223-2231.
[3] 成宇翔,张卫平,陈文元,等. MEMS微陀螺仪研究进展[J]. 微纳电子技术,2011,48(5):277-285.
Cheng Yu-xiang,Zhang Wei-ping,Chen Wen-yuan,et al.Research development of MEMS micro-gyroscopes[J]. Micronanoelectronic Technology,2011,48(5):277-285.
[4] 孙树红,赵长海,万秋华,等. 小型光电编码器自动检测系统[J]. 中国光学,2013,6(4):600-606.
Sun Shu-hong,Zhao Chang-hai,Wan Qiu-hua,et al. Automatic detection system for miniature photoelectrical encoder[J]. Chinese Optics,2013,6(4):600- 606.
[5] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering Transactions,1960:82(Series D):35-45.
[6] Kirkko-Jaakkola M, Collin J, Takala J. Bias Prediction for MEMS Gyroscopes[J]. IEEE Sensors Journal,2012,12(6):2157-2163.
[7] Park S, Horowitz R. Adaptive control for the conventional mode of operation of MEMS gyroscopes[J]. Journal of Microelectromechanical Systems,2003,12(1):101-108.
[8] 李贤涛,张葆,赵春蕾,等. 基于自适应的自抗扰控制技术提高扰动隔离度[J]. 吉林大学学报:工学版,2015,45(1):202-208.
Li Xian-tao, Zhang Bao, Zhao Chun-lei, et al. Improve isolation degree based on adaptive active disturbance rejection controller[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(1):202-208.
[9] 魏伟,戴明,李嘉全,等. 基于重复-自抗扰控制的航空光电稳定平台控制系统设计[J]. 吉林大学学报:工学版,2015,45(6):1924-1932.
Wei Wei, Dai Ming,Li Jia-quan, et al. Design of airborne opto-electric platform control system based on ADRC and repetitive control theory[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45(6):1924-1932.
[10] 韩京清. 自抗扰控制技术[J]. 前沿科学,2007(1):24-31.
Han Jing-qing. Active disturbance rejection control technique[J]. Frontier Science,2007(1):24-31.
[11] 丛爽,孙光立,邓科,等.陀螺稳定平台的自抗扰及其滤波控制[J]. 光学精密工程,2016,24(1):169-177.
Cong Shuang, Sun Guang-li, Deng Ke, et al. Active disturbance rejection and filter control of gyro-stabilized platform[J]. Optics and Precision Engineering,2016,24(1):169-177.
[12] 钱华明,夏全喜,阙兴涛,等. 基于Kalman滤波的MEMS陀螺仪滤波算法[J]. 哈尔滨工程大学学报,2010,31(9):1217-1221.
Qian Hua-ming, Xia Quan-xi, Que Xing-tao, et al. Algorithm for a MEMS gyroscope based on Kalman filter[J]. Journal of Harbin Engineering University,2010,31(9):1217-1221.
[13] 李慧,吴军辉,朱霞,等. 速率陀螺式激光导引头稳定跟踪原理分析与仿真[J]. 红外与激光工程,2011,40(7):1337-1341.
Li Hui, Wu Jun-Hui, Zhu Xia, et al. Analysis and tracking principle for rate gyroscope laser seeker[J]. Infrared and Laser Engineering,2011,40(7):1337-1341.
[14] 骆荣剑,李颖,钱广华,等.机动目标跟踪中一种改进的自适应卡尔曼滤波算法[J].重庆邮电大学学报:自然科学版,2015,27(1):31-36.
Luo Rong-jian,Li Ying,Qian Guang-hua,et al.Improved maneuvering target tracking adaptive Kalman filter algorithm[J]. Chongqing University of Posts and Telecommunications Journal(Natural Science Edition),2015,27(1):31-36.
[15] 李刚,蔡成林,李思敏,等.抗差与自适应组合的卡尔曼滤波算法在动态导航中的研究[J].重庆邮电大学学报:自然科学版,2015,27(1):37-43.
Li Gang,Cai Cheng-lin,Li Si-min, et al.Robust adaptive Kalman filter in kinematic positioning[J]. Chongqing University of Posts and Telecommunications Journal(Natural Science Edition),2015,27(1):37-43.
[16] 蒙涛,王昊,李辉, 等. MEMS陀螺误差建模与滤波方法[J]. 系统工程与电子技术,2009,31(8):1944-1948.
Meng Tao, Wang Hao, Li Hui, et al. Error modeling and filtering method for MEMS gyroscope[J]. Systems Engineering and Electronics,2009,31(8):1944-1948.
[17] 宋康宁,丛爽,邓科,等. 自适应强跟踪卡尔曼滤波在陀螺稳定平台中的应用[J]. 中国科学技术大学学报,2015,45(1):17-22.
Song Kang-ning, Cong Shuang, Deng Ke, et al. Application of adaptive strong tracking Kalman filter to gyro-stabilized platform[J]. Journal of University of Science and Technology of China,2015, 45(1):17-22.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[13] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[14] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[15] 胡云峰, 顾万里, 梁瑜, 杜乐, 于树友, 陈虹. 混合动力汽车启停非线性控制器设计[J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!