吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 387-397.doi: 10.13229/j.cnki.jdxbgxb20161252

• • 上一篇    下一篇

电动汽车动力电池液体冷却系统构建及其工作过程仿真

张天时1, 2, 宋东鉴2, 高青1, 2, 王国华1, 2, 闫振敏2, 宋薇1, 2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2.吉林大学 汽车工程学院,长春130022
  • 出版日期:2018-03-01 发布日期:2018-03-01
  • 通讯作者: 高青(1961-),男,教授,博士生导师.研究方向:汽车热管理及能源高效利用.E-mail:gaoqing@jlu.edu.cn
  • 作者简介:张天时(1985-),男,博士研究生.研究方向:电动汽车热管理.E-mail:zhangtianshi@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51376079); 长春市科技创新“双十工程”项目(17SS022); 吉林发改委产业创新专项项目(2016C022); 吉林省科技厅青年人才基金项目(20180520066JH)

Construction of power battery liquid cooling system for electric vehicle and simulation of its working process

ZHANG Tian-shi1, 2, SONG Dong-jian2, GAO Qing1, 2, WANG Guo-hua1, 2, YAN Zhen-min2, SONG Wei1, 2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China;
    2.College of Automotive Engineering, Jilin University, Changchun 130022, China
  • Online:2018-03-01 Published:2018-03-01

摘要: 为保障电动汽车电池组较佳的工作温度,提出一种热泵辅助液体循环电池冷却系统,并利用理论和实验表征方法基于MATLAB平台建立各构件模型。计算结果表明,该冷却系统能够满足电池高温高负荷冷却需求,其中热泵辅助冷却作用明显。同时,通过一维计算初步分析表明,电池散热器前置于冷凝器的布置形式相比后置形式具备更好的电池冷却换热效果。此外,在行驶工况下,电池冷却过程中水泵液流量的作用相比风扇更加敏感,在高温高负荷工况下应以水泵调节为主。

关键词: 车辆工程, 电动汽车, 电池冷却, 热泵辅助, 模型构建, 仿真计算

Abstract: To ensure better operation temperature of the battery pack for electric vehicle, a battery cooling system with heat pump was proposed, and the model and the system were built on MATLAB using theoretical and experimental description method. The numerical simulation results show that the proposed system can effectively meet the battery cooling requirement at high temperature and high working load, and the heat pump has obvious auxiliary cooling effect. If the battery radiator is placed in front of the condenser the cooling effect is better than that the battery radiator is placed behind the condenser. In addition, the impact of the liquid flow rate is more obvious than the rotational speed of the fan in the dynamic cooling process. Therefore, the pump should serve as the main regulation factor in the battery cooling process, especially under high temperature and high load conditions.

Key words: vehicle engineering, electric vehicle, battery cooling, assisted by heat pump, model building, simulating calculation

中图分类号: 

  • U469
[1] Kizilel R, Sabbah R, Selman J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2):1105-1112.
[2] Kawamura T, Kimura A,Egashira M, et al. Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells[J]. Journal of Power Sources, 2002, 104(2):260-264.
[3] 秦大同, 梁昌杰, 杨亚联,等. 混合动力汽车用镍氢电池组散热性能仿真与试验[J]. 中国公路学报, 2010, 23(5):107-112.
Qin Da-tong, Liang Chang-jie, Yang Ya-lian, et al.Simulation and experiment on heat dissipation property of nickel-metal hydride battery package in hybride electric vehicle [J]. China Journal of Highway and Transport, 2010, 23(5): 107-112.
[4] 王庆年, 段本明, 王鹏宇,等. 插电式混合动力汽车动力传动系参数优化[J]. 吉林大学学报:工学版, 2017, 47(1):1-7.
Wang Qing-nian, Duan Ben-ming, Wang Peng-yu,et al.Optimization of powertrain transmission parameters of plug-in hybrid electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(1):1-7.
[5] Shahidinejad S, Bibeau E, Filizadeh S. Design and simulation of a thermal management system for plug-in electric vehicles in cold climates[C]∥ SAE Paper,2012-01-0118.
[6] Nelson P, Dees D, Amine K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2):349-356.
[7] Wu M S, Liu K H, Wang Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1):160-166.
[8] Chen D, Jiang J, Kim G H, et al. Comparison of different cooling methods for lithium ion battery cells[J]. Applied Thermal Engineering,2016, 94:846-854.
[9] Hosoz M, Direk M. Performance evaluation of an integrated automotive air conditioning and heat pump system[J]. Energy Conversion & Management, 2006, 47(5):545-559.
[10] Zhang T, Gao C, Gao Q, et al. Status and development of electric vehicle integrated thermal management from BTM to HVAC[J]. Applied Thermal Engineering, 2015, 88:398-409.
[11] Pendergast D R, Demauro E P, Fletcher M, et al. A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources, 2011, 196(2):793-800.
[12] Lee K H, Cha H R, Kim Y B. Development of an interior permanent magnet motor through rotor cooling for electric vehicles[J]. Applied Thermal Engineering, 2016, 95:348-356.
[13] Jarrett A, Kim I Y. Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196(23):10359-10368.
[14] Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1984, 132(1):5-12.
[15] 许超.混合动力客车电池包散热系统研究[D].上海:上海交通大学车辆工程系,2010.
Xu Chao. Research of cooling system of battery pack on hybrid electric bus[D]. Shanghai: Department of Vehicle Engineering, Shanghai Jiaotong University, 2010.
[16] Sato N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Sources, 2000, 99(1/2):70-77.
[17] 余志生.汽车理论[M].北京:机械工业出版社, 2006.
[18] Cowell T A,Heikal M R, Achaichia A. Flow and heat transfer in compact louvered fin surfaces[J]. Experimental Thermal & Fluid Science, 1995, 10(2):192-199.
[19] Mujumdar P A. Handbook of single-phase convective heat transfer[J]. Drying Technology, 1987, 7(1):149-150.
[20] Park C,Jaura A K. Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehicles[J]. SAE Transactions, 2003, 112:1835-1842.
[21] Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13):5685-5696.
[22] Hsieh Y Y, Lin T F. Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger[J]. International Journal of Heat & Mass Transfer, 2002, 45(5):1033-1044.
[23] Yan Y Y, Lin T F, Yang B C. Evaporation heat transfer and pressure drop of refrigerant R134a in a plate heat exchanger[C]∥ ASME 1997 Turbo Asia Conference, Singapore,1997:V001T13A024-V001 T13A024.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王文权, 商延赓, 李秀娟, 王春生, 张桂兰. 激光焊接650 MPa相变诱发塑性钢的组织与性能[J]. , 2012, 42(05): 1203 -1207 .
[2] 黄健康1, 何翠翠1, 2, 石玗1, 樊丁1. 铝/钢异种金属焊接接头界面Al-Fe金属间化合物生成及其热力学分析[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] 徐涛, 刘光洁, 葛海潮, 张炜, 于征磊. 焊接热源局部坐标移动曲线路径建模方法[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] 骆海涛, 周维佳, 王洪光, 武加锋. 搅拌摩擦焊机器人典型工况下的受载分析[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] 李义, 梁继才, 滕菲, 梁策, 于佳奇. 型材多点拉弯成形模具型面的分段补偿迭代方法[J]. 吉林大学学报(工学版), 2016, 46(6): 1961 -1966 .
[7] 李明达, 隗海林, 门玉琢, 包翠竹. 复杂底部结构下的重型载货汽车气动阻力[J]. 吉林大学学报(工学版), 2017, 47(3): 731 -736 .
[8] 彭玮, 李国祥, 闫伟. 适用于发动机散热器的壁面函数改进[J]. 吉林大学学报(工学版), 2017, 47(3): 804 -810 .
[9] 董超, 成凯, 胡康乐, 胡文强. 全地形铰接式履带车辆俯仰运动性能[J]. 吉林大学学报(工学版), 2017, 47(3): 827 -836 .
[10] 顾万里, 张森, 胡云峰, 陈虹. 有刷直流电机非线性控制系统设计[J]. 吉林大学学报(工学版), 2017, 47(3): 900 -907 .