吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 512-519.doi: 10.13229/j.cnki.jdxbgxb20190241

• 材料科学与工程 • 上一篇    

6082铝合金超厚板搅拌摩擦焊接头组织与性能

宫文彪1(),朱芮1,郄新哲1,崔恒2,宫明月2   

  1. 1.长春工业大学 先进结构材料教育部重点实验室,长春 130012
    2.长春轨道客车股份有限公司,长春 130062
  • 收稿日期:2019-03-14 出版日期:2020-03-01 发布日期:2020-03-08
  • 作者简介:宫文彪(1966-),男,教授,博士.研究方向:焊接及热喷涂.E-mail:gwbiao@163.com
  • 基金资助:
    长春市科技创新“双十工程”项目(17SS024);吉林省发改委产业技术研究与开发专项项目(2019C046-7)

Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld

Wen-biao GONG1(),Rui ZHU1,Xin-zhe QIE1,Heng CUI2,Ming-yue GONG2   

  1. 1.Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
    2.Changchun Railway Vehicles Co. Ltd. , Changchun 130062, China
  • Received:2019-03-14 Online:2020-03-01 Published:2020-03-08

摘要:

采用搅拌摩擦焊对84 mm厚的6082-T4铝合金进行双面对接焊接,焊后进行人工时效(180 ℃×5 h)处理。研究了沿板厚方向焊接接头的微观组织与力学性能变化。结果表明:焊核区组织为细小的等轴晶粒,从表面至焊缝的中心,晶粒尺寸分别为16、13、5 μm,高角度晶界所占比例分别为77.2%、76.3%、72.5%;焊核区的强化相主要为“GP区”及β″相;热机械影响区晶粒沿搅拌头旋转方向被拉长,组织中存在较高密度位错;焊缝中心层区域硬度分布呈“V”型,硬度最低值出现在双面焊重叠区,其他位置硬度曲线呈“W”型分布;正、反面两道焊缝发生断裂的位置均为TMAZ与HAZ交汇的区域,接头平均抗拉强度沿厚度方向从表面至中心分别为211、201、180 MPa,呈逐渐降低趋势;中心层抗拉强度最低,但其断裂伸长率最高,约为母材的69%;断口为大小不同的韧窝,接头表现为韧性断裂。

关键词: 金属材料, 6082铝合金, 搅拌摩擦焊, 超厚板, 组织, 性能

Abstract:

The double-sided of friction stir butt welding was carried out on the 6082-T4 aluminum alloys with thickness of 84 mm , and artificial aging (180 ℃×5 h) was applied after welding. The microstructure and mechanical properties of welded joints along the thickness direction were studied. The results indicate that the microstructure of the Welding Nugget Zone (WNZ) is fine equiaxed grains. From the surface of the plate to the center of welding seam, the grain sizes are 16 μm, 13 μm, and 5 μm, respectively, and the proportions of high angle grain boundaries are 77.2%, 76.3%, and 72.5%, respectively. The strengthening phase of WNZ is mainly "GP zone" and β″. The grain of the Thermo-Mechanically Affected Zone (TMAZ) is elongated and there is a high density dislocation. The microhardness in the thickness direction indicates that the hardness curve of the center overlap area of the weld is "V" type, the lowest hardness value appears in the double-sided welding overlap area, while the hardness curve of the other area is "W" type,. The samples are all broken in the area where TMAZ and Heat Affected Zone (HAZ) meet. The tensile strengths from the surface to the center overlap in the thickness direction are 211 MPa, 201 MPa, and 180 MPa, which gradually decrease. The center overlap zone has the lowest tensile strength, but its elongation is the highest, which is about 69% of the base metal. The fracture surfaces were distributed with dimples of different sizes, and fractures in all tensile specimens were ductile fracture.

Key words: metallic materials, 6082 aluminum alloy, friction stir welding, ultra-thickness plate, microstructure, propertie

中图分类号: 

  • TG456.9

图1

显微硬度实验位置分布"

图2

焊缝横截面宏观形貌"

图3

“S”线光学微观形貌"

图4

FSW接头不同区域光学显微组织"

图5

焊核区沿厚度方向EBSD微观结构"

图6

焊核区沿厚度方向的晶粒取向差分布图"

图7

搅拌摩擦焊接接头透射电子图像"

图8

焊接接头横截面沿厚度方向显微硬度"

图9

FSW接头拉伸试验结果"

图10

焊缝拉伸断口形貌"

图11

FSW接头弯曲形貌"

1 牛得田. 铝合金车体在轨道车辆上的应用及展望[J]. 机车车辆工艺, 2003(3): 1-2.
Niu De-tian. Application of Al alloy carbody to railway vehicles and its prospects[J]. Locomotive & Rolling Stock Technology, 2003(3): 1-2.
2 盛建辉, 彭家仁, 李光, 等. 搅拌摩擦焊工艺及其在地铁铝合金车体上的应用[J]. 电力机车与城轨车辆, 2009, 32(3): 28-31.
Sheng Jian-hui,Peng Jia-ren, Li Guang, et al. Friction stir welding technology and its application on metro aluminum alloy car body[J]. Electric Locomotive and the Urban Rail Vehicles, 2009, 32(3): 28-31.
3 杨悦, 周磊磊. 微弧氧化对铝合金搅拌摩擦焊缝耐蚀性能的影响[J]. 吉林大学学报: 工学版, 2016, 46(2): 511-515.
Yang Yue,Zhou Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(2): 511-515.
4 黎俊初, 周德生, 刘大海, 等. 2A12铝合金筋板件T型搅拌摩擦焊工艺及焊后热处理[J]. 材料科学与工艺, 2011, 19(2): 80-85, 91.
Li Jun-chun, Zhou De-sheng, Liu Da-hai, et al. Friction stir welding and successive heat treatment of T-shaped rib-web parts of 2A12 aluminium alloy[J]. Materials Science &Technology, 2011, 19(2): 80-85, 91.
5 杨模聪, 孙中刚, 马锐, 等. 2060搅拌摩擦焊对接接头显微组织与析出相分析[J]. 材料科学与工艺, 2014, 22(5): 119-123.
Yang Mo-cong, Sun Zhong-gang, Ma Rui, et al. Analysis for microstricture and precipitation phase evolution of friction stir welding 2060 butt jiont[J]. Materials Science and Technology, 2014, 22(5): 119-123.
6 张秋征, 宫文彪, 刘杰. 6005A-T6铝合金厚板单面与双面搅拌摩擦焊的性能比较[J]. 材料热处理学报, 2014, 35(6): 75-79.
Zhang Qiu-zheng, Gong Wen-biao, Liu Jie. Property comparison of aluminum alloy 6005A-T6 thick plate by single-sided and double-sided processes of friction stir welding[J]. Transactions of Materials and Heat Treatment, 2014, 35(6): 75-79.
7 罗维, 贺地求, 邬红光, 等. 22 mm 6061-T6铝合金板的搅拌摩擦焊接[J]. 金属铸锻焊技术, 2010, 39(15): 130-132.
Luo Wei, He Di-qiu, Wu Hong-guang, et al. Friction stir welding of 22 mm plate of 6061-T6 aluminum alloy plate[J]. Casting Forging Welding, 2010, 39(15): 130-132.
8 Ma Z, Chen D, Liu H, et al. Microstructure and properties of welding joints of 30 mm thickness 7A52 aluminum alloy plate by friction stir welding[J]. Ordnance Material Science & Engineering, 2014, 37(2): 63-65.
9 He D, Luo W, Wu H. Microstructure and mechanical property analysis on double-sided friction stir welding joints of 60 mm 6061-T6 aluminum alloy plate[J]. Journal of Materials Engineering, 2011, 1(9): 20-24.
10 Zhang Z, Xiao B L, Ma Z Y. Effect of segregation of secondary phase particles and “S” line on tensile fracture behavior of friction stir-welded 2024Al-T351 joints[J]. Metallurgical & Materials Transactions A, 2013, 44(9): 4081-4097.
11 Di S, Yang X, Fang D, et al. The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy[J]. Materials Chemistry & Physics, 2007, 104(2/3): 244-248.
12 Okamura H, Aota K, Sakamoto M, et al. Behavior of oxides during friction stir welding of aluminum alloy and their effect on its mechanical properties[J]. Welding International, 2002, 16(4): 266-275.
13 Scialpi A, Filippis L A C D, Cavaliere P. Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminum alloy[J]. Material & Design, 2007, 28(4): 1124-1129.
14 Adamowski J, Szkodo M. Friction stir welds(FSW) of aluminum alloy AW6082-T6[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 20(1/2): 403-406.
15 Xu W F, Liu J H. Microstructure evolution along thickness in double-side friction stir welded 7085 Al alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3212-3222.
16 Yadav D, Bauri R. Effect of friction stir processing on microstructure and mechanical properties of aluminium[J]. Materials Science & Engineering A, 2012, 539: 85-92.
17 Denquin A, Allehaux D, Campagnac M H, et al. Relationship between microstructural variations and properties of a friction stir welded 6056 aluminum alloy[J]. Welding in the World, 2002, 46(11/12): 14-19.
18 李于朋, 孙大千, 宫文彪. 6082-T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报: 工学版, 2019, 49(3): 836-841.
Li Yu-peng, Sun Da-qian, Gong Wen-biao. Temperature fields in bobbin-tool friction stir welding for 6082-t6 aluminum alloy sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 836-841.
19 Andersen S J, Zandbergen H W, Jansen J, et al. The crystal structure of the β'' phase in Al-Mg-Si alloys[J]. Acta Materialia, 2007, 46(9): 3283-3298.
20 王冰. 6082-T6铝合金搅拌摩擦焊接头微观组织及力学性能的研究[D]. 长春: 吉林大学材料科学与工程学院, 2015.
Wang Bing. Study on microstructures and mechanical properties of friction stir welding joints of 6082-T6 aluminum alloy[D]. Changchun: College of Materials Science and Engineering, Jilin University, 2015.
21 Murayama M, Hono K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys[J]. Acta Materialia, 1999, 47(5): 1537-1548.
22 王希靖, 魏学玲, 张亮亮. 6082-T6铝合金搅拌摩擦焊组织演变与力学性能[J]. 焊接学报, 2018, 39(3): 1-5.
Wang Xi-jing, Wei Xue-ling, Zhang Liang-liang. Microstructure evolution and mechanical properties of 6082-T6 Al alloy friction stir welding[J]. Transactions of the China Welding Institution, 2018, 39(3): 1-5.
[1] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[2] 陈学文,王继业,杨喜晴,皇涛,宋克兴. Cr8合金钢热变形行为及位错密度演变规律[J]. 吉林大学学报(工学版), 2020, 50(1): 91-99.
[3] 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215.
[4] 邓钧忆,刘衍珩,冯时,赵荣村,王健. 基于GSPN的Ad⁃hoc网络性能和安全平衡[J]. 吉林大学学报(工学版), 2020, 50(1): 255-261.
[5] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[6] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[7] 王金国,任帅,闫瑞芳,黄恺,王志强. TiC颗粒对铸态球墨铸铁组织和力学性能的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 2010-2018.
[8] 石舟,寇淑清. 36MnVS4裂解连杆性能分析及轻量化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1992-2001.
[9] 佟鑫,张雅娇,黄玉山,胡正正,王庆,张志辉. 选区激光熔化304L不锈钢的组织结构及力学性能分析[J]. 吉林大学学报(工学版), 2019, 49(5): 1615-1621.
[10] 李明,王浩然,赵唯坚. 带抗剪键叠合板的力学性能[J]. 吉林大学学报(工学版), 2019, 49(5): 1509-1520.
[11] 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123.
[12] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[13] 鲁金忠,周婉婷,张圣洋,邵亦锴,王长雨,罗开玉. 激光冲击强化层数对6061⁃T6铝合金抗腐蚀性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 842-849.
[14] 王露,刘玉雯,陈红. 侧风下峡谷桥隧连接段汽车的行驶特性[J]. 吉林大学学报(工学版), 2019, 49(3): 736-748.
[15] 李于朋,孙大千,宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报(工学版), 2019, 49(3): 836-841.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!