吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (1): 183-190.doi: 10.13229/j.cnki.jdxbgxb20180882

• 交通运输工程·土木工程 • 上一篇    

掺盐沥青胶浆低温流变及粘附特性

熊锐1,2(),乔宁1,褚辞1,杨发3,关博文1,2,盛燕萍1,2,牛冬瑜1,2   

  1. 1. 长安大学 材料科学与工程学院,西安 710061
    2. 交通铺面材料教育部工程研究中心,西安 710061
    3. 云南省交通投资建设集团有限公司,昆明 650228
  • 收稿日期:2018-08-25 出版日期:2020-01-01 发布日期:2020-02-06
  • 作者简介:熊锐(1982-),男,副教授,博士. 研究方向:道路工程材料. E-mail:xiongr61@126.com
  • 基金资助:
    国家自然科学基金项目(51608046);云南省交通运输厅2019年科技创新管理咨询研究项目(2019304);中央高校基本科研业务费专项资金项目(300102319202)

Investigation on low-temperature rheology and adhesion properties of salt-doped asphalt mortars

Rui XIONG1,2(),Ning QIAO1,Ci CHU1,Fa YANG3,Bo-wen GUAN1,2,Yan-ping SHENG1,2,Dong-yu NIU1,2   

  1. 1. School of Materials Science and Engineering, Chang′an University, Xi′an 710061, China
    2. Engineering Research Center of Transportation Materials of Ministry of Education, Xi′an 710061, China
    3. Yunnan Communications Investment and Construction Group Co. , Ltd. , Kunming 650228, China
  • Received:2018-08-25 Online:2020-01-01 Published:2020-02-06

摘要:

为探究盐分对沥青胶浆低温流变及粘附特性的影响规律,采用盐颗粒以体积比1∶1替代矿粉的沥青胶浆制备方法,通过弯曲梁流变试验(BBR)研究不同掺盐沥青胶浆在30 d与120 d龄期下的低温流变特性,并构建相应的Burgers模型,分析盐分对沥青低温粘弹特性的影响;通过接触角试验,得出沥青表面能参数,评价不同沥青胶浆粘附特性;借助扫描电镜(SEM)和红外光谱(FTIR)手段,探究掺盐沥青胶浆微观作用机理。结果表明:相较于基质沥青,不同种类掺盐沥青胶浆随着龄期的增加,低温流变性能不断降低;经120 d龄期后,沥青接触角明显增大,掺盐沥青胶浆表面能降低,粘附性劣化;盐分颗粒溶析及其盐老化效应,是导致掺盐沥青胶浆性能劣化的主要诱因。

关键词: 道路工程, 盐分, 沥青胶浆, 低温流变特性, 接触角, 粘附特性, 盐老化效应

Abstract:

In order to explore the influence of salts on the low-temperature rheological properties and adhesion properties of asphalt mortars, preparation method of asphalt mortars with salt particles replacing mineral powder by volume ratio 1:1 and the bending beam rheological test (BBR) were used to study the effects of different salt-doped asphalt mortars on the low-temperature rheological properties at 30 d and 120 d test age. The corresponding Burgers model was built to analyze the effect of salinity on low temperature viscoelasticity of asphalt. Through the contact angle test, the surface energy parameters of asphalt were obtained, and the adhesion characteristics of different asphalt mortar were evaluated. Scanning electron microscopy (SEM) and infrared spectroscopy (FTIR) were used to explore the microscopic mechanism of salt-doped asphalt mortars. The results showed that compared with control asphalt, the rheological property of salt-doped asphalt mortars at low temperature decreases with the increase of age. At the age of 120d, the contact angles of asphalt increase obviously, the surface energy of salt-doped asphalt mortars decreases and its adhesion property degrades. The dissolution and crystallization process of salt particle and its salt aging effect are the main inducing factors of performance deterioration of salt-doped asphalt mortars.

Key words: road engineering, salt, asphalt mortar, low temperature rheological characteristic, contact angle, adhesion characteristic, salt aging effect

中图分类号: 

  • U416.217

表1

SK?90#沥青技术性质"

指标 单位 技术要求 试验结果 试验方法
针入度 15 ℃, 100 g, 5 s 0.1 mm 43 T0604
25 ℃, 100 g, 5 s 80~100 86
30 ℃, 100 g, 5 s 160
软化点(R&B) ≥44 47 T0606
延度(15 ℃,5 cm/min) cm ≥100 >180 T0605
闪点 ≥260 304 T0611
溶解度 % ≥99.5 99.8 T0607
密度(15 ℃) g/cm3 1.030 T0603

RTFOT

(163 ℃,75 min)

质量变化 % ±0.8 0.15 T0610
残留针入度比(25 ℃) % ≥57 60.5 T0604
残留延度(10 ℃) cm ≥8 9.8 T0605

表2

矿粉技术性质"

项目 单位 技术要求 试验结果 试验方法
表观密度 t/m3 ≥2.50 2.730 T0352
含水量 % ≤1 0.429 T0103
粒度范围<0.6 mm % 100 100 T0351
<0.15 mm % 90~100 97.8 T0351
<0.075 mm % 75~100 95.1 T0351
亲水系数 <1 0.313 T0353

表3

三种测试液体的表面自由能参数 mJ/m2 "

液体类型 γ L γ L d γ L p γ L + γ L -
蒸馏水 72.8 21.8 51.0 25.5 25.5
甘油 63.4 37.0 26.4 3.92 57.4
乙二醇 48.3 29.3 19.0 1.92 47.0

图1

不同温度下沥青胶浆劲度模量S和蠕变速率m变化趋势"

图2

Burgers模型拟合曲线示例"

表4

不同温度下沥青胶浆Burgers模型参数"

测试温度(龄期) 胶浆类型 E 1 /MPa η 1/(MPa·s) E 2/MPa η 2/(MPa·s) λ/s τ/s
-6 ℃(30 d) Matrix 346.79 4 932.53 196.72 937.23 14.2 4.8
LMF 782.53 12 554.31 290.73 2 474.54 16.0 8.5
Na2SO4 730.59 12 834.00 275.46 2 418.66 17.6 8.8
NaCl 714.15 13 042.15 287.76 2 589.70 18.3 9.0
-6 ℃(120 d) LMF 912.99 17 624.22 342.42 3 097.03 19.3 9.0
Na2SO4 768.39 15 581.16 318.66 2 793.52 20.3 8.8
NaCl 834.14 16 737.97 332.88 3 088.20 20.1 9.3
-12 ℃(30 d) Matrix 527.98 16 707.08 262.37 2 729.59 31.6 10.4
LMF 1 550.60 49 238.56 1 037.81 8 772.50 31.8 8.5
Na2SO4 1 266.20 63 975.90 741.95 9 754.37 50.5 13.1
NaCl 1 300.75 59 138.70 801.74 9 313.78 45.5 11.6
-12 ℃(120 d) LMF 1 560.36 72 375.70 835.49 9 732.53 46.4 11.6
Na2SO4 1 253.03 48 445.35 775.89 8 272.98 38.7 10.7
NaCl 1 415.10 73 947.00 923.02 11 223.95 52.3 12.2
-18 ℃(30 d) Matrix 798.17 68 529.06 688.81 9 428.90 85.9 13.7
LMF 2 091.98 234 840.90 2 209.36 34 816.08 112.3 15.8
Na2SO4 1 767.52 206 386.83 1 954.40 29 102.74 116.8 14.9
NaCl 1 712.29 208 508.50 1 826.30 27 738.74 121.8 15.2
-18 ℃(120 d) LMF 2 075.84 268 028.20 2 359.68 35 919.30 129.1 15.2
Na2SO4 1 981.75 241 741.30 2 131.77 32 158.26 122.0 15.1
NaCl 2 307.47 316 521.10 2 684.66 43 237.83 137.2 16.1
-24 ℃(30 d) Matrix 1 237.68 253 376.30 1 890.61 35 478.86 204.7 18.8
LMF 2 775.28 748 004.60 5 281.96 100 295.60 269.5 19.0
Na2SO4 2 600.22 678 850.88 5 183.93 94 999.29 261.1 18.3
NaCl 2 739.30 702 196.10 5 317.11 95 446.77 256.3 18.0
-24 ℃(120 d) LMF 2 680.40 797 835.35 6 048.74 93 376.07 297.7 15.4
Na2SO4 2 473.14 569 291.42 4 193.03 83 594.54 230.2 19.9
NaCl 2 961.77 923 043.40 6 426.94 129 106.5 311.7 20.1

表5

沥青胶浆低温指标m/S值"

测试温度(龄期) 基质沥青 LMF沥青胶浆 Na2SO4沥青胶浆 NaCl沥青胶浆
-6℃(30 d)

0.005 80

0.004 93 0.00513 0.00491
-6℃(120 d) 0.003 55 0.00425 0.00402
-12℃(30 d) 0.004 56 0.001 33 0.001 44 0.001 24
-12℃(120 d) 0.001 06 0.001 12 0.001 02
-18℃(30 d) 0.001 18 0.000 36 0.000 40 0.000 40
-18℃(120 d) 0.000 31 0.000 35 0.000 27
-24℃(30 d) 0.000 36 0.000 13 0.000 17 0.000 13
-24℃(120 d) 0.000 11 0.000 14 0.000 10

表6

沥青胶浆与测试液体的接触角"

胶浆类型 蒸馏水 甘油 乙二醇
均值/(°) 变异系数/% 均值/(°) 变异系数/% 均值/(°) 变异系数/%
Matrix 112.85 1.46 103.84 0.29 81.97 1.46
LMF30 117.64 1.22 105.72 0.35 82.58 1.41
LMF120 119.37 1.53 106.99 0.36 90.97 0.94
Na2SO430 117.54 1.75 108.38 0.71 82.35 1.51
Na2SO4120 118.10 0.58 109.16 0.98 86.70 0.99
NaCl30 115.51 1.54 106.37 0.79 91.29 0.64
NaCl120 119.81 1.87 108.23 0.55 92.23 0.79

图3

沥青胶浆表面自由能及其分量"

图4

沥青胶浆红外光谱图"

图5

基质沥青与不同沥青胶浆SEM微观形貌"

1 Xiong R , Wang L , Guan B W , et al . Durability prediction of asphalt mixture exposed to sulfate and dry-wet circle erosion environment[J]. International Journal of Pavement Research and Technology, 2015, 8(1): 53-57.
2 韩吉伟,崔亚楠,李嘉迪,等 . 盐冻循环条件下改性沥青的细观结构及低温流变性能[J]. 复合材料学报,2016,33(8):1718-1724.
Han Ji-wei , Cui Ya-nan , Li Jia-di , et al . Microstructure and rheological properties at lowtemperature of modified asphalt under salt freezing cycle[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1718-1724.
3 Feng D C , Yi J Y , Wang D S , et al . Impact of salt and freeze-thaw cycles on performance of asphalt mixtures in coastal frozen region of China[J]. Cold Regions Science and Technology, 2010, 62(1): 34-41.
4 Han J W , Cui Y N , Li Z , et al . Research on the microstructure and performance of asphalt after the salt Freezing cycle[J]. Applied Mechanics and Materials, 2014, 575: 238-244.
5 马慧莉 . 无机填料对沥青胶浆力学性能影响的细观力学分析[D]. 长春:吉林大学交通学院,2013.
Ma Hui-li . Research of inorganic filler on the properties of asphalt mastic by meso-mechanical method[D]. Changchun:College of Transportation, Jilin University, 2013.
6 Guo Meng , Tan Yi-qiu , Hou Yue , et al . Improvement of evaluation indicator of interfacial interaction between asphalt binder and mineral fillers[J]. Construction and Building Materials, 2017, 151: 236-245.
7 熊锐,关博文,盛燕萍 . 硫酸盐-干湿循环侵蚀环境下水镁石纤维沥青混合料抗疲劳性能[J]. 武汉理工大学学报,2014,36(10):45-51.
Xiong Rui , Guan Bo-wen , Sheng Yan-ping . Anti-fatigue property of brucite fiber reinforced asphalt mixture under sulfate and dry-wet circle corrosion environment[J]. Journal of Wuhan University of Technology, 2014, 36(10): 45-51.
8 黄新颜,沙爱民,蒋玮,等 . 盐分侵蚀对沥青和沥青混合料性能影响及作用机理[J]. 长安大学学报:自然科学版,2017,37(3):33-38,46.
Huang Xin-yan , Sha Ai-min , Jiang Wei , et al . Effect and mechanism of salt erosion on performance of bitumen and asphalt mixtures[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(3): 33-38, 46.
9 Liu Z Z , Sha A M , Xing M L , et al . Low temperature property and salt releasing characteristics of antifreeze asphalt concrete under static and dynamic conditions[J]. Cold Regions Science and Technology, 2015, 114: 9-14.
10 陈拴发,刘状壮,邢明亮,等 . 融雪抑冰材料疏水性能影响因素研究[J]. 建筑材料学报,2013,16(6):1053-1057,1071.
Chen Shuan-fa , Liu Zhuang-zhuang , Xing Ming-liang , et al . Research on the factors influencing hydrophobic properties of anti-freezing material[J]. Journal of Building Materials, 2013, 16(6): 1053-1057, 1071.
11 李海莲,李波,王起才,等 . 基于表面能理论的老化温拌SBS改性沥青结合料的粘附性[J].材料导报,2017,31(16):129-133,149.
Li Hai-lian , Li Bo , Wang Qi-cai , et al . Adhesion of aged SBS modified asphalt binder containing warm mix additive based on surface free energy[J]. Materials Review, 2017, 31(16): 129-133, 149.
12 张恺,罗蓉,张德润 . 基于表面自由能理论的彩色树脂类沥青材料润湿性分析[J]. 中国公路学报,2016,29(5):34-40.
Zhang Kai , Luo Rong , Zhang De-run . Wettability analysis on colored resin asphalt binder based on surface free energy theory[J]. China Journal of Highway and Transport, 2016, 29(5): 34-40.
13 Liu S T , Cao W D , Shang S J , et al . Analysis and application of relationships between low-temperature rheological performance parameters of asphalt binders[J]. Construction and Building Materials, 2010, 24(4): 471-478.
[1] 王芳,李晓光,郭慧,胡佳. 基于驾驶员视觉兴趣区的沙漠草原公路曲线间直线段线形指标优化[J]. 吉林大学学报(工学版), 2020, 50(1): 114-120.
[2] 王英,李萍,念腾飞,姜继斌. 基于动水冲刷作用的沥青混合料短期水损害特性[J]. 吉林大学学报(工学版), 2020, 50(1): 174-182.
[3] 万平,吴超仲,马晓凤. 基于ROC曲线和驾驶行为特征的驾驶愤怒强度判别阈值[J]. 吉林大学学报(工学版), 2020, 50(1): 121-131.
[4] 朱春凤,程永春,梁春雨,肖波. 硅藻土⁃玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173.
[5] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[6] 张云龙,周刘光,王静,吴春利,吕翔. 冻融对粉砂土力学特性及路堤边坡稳定性的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1531-1538.
[7] 彭勇,高华,万蕾,刘贵应. 沥青混合料劈裂强度影响因素数值模拟[J]. 吉林大学学报(工学版), 2019, 49(5): 1521-1530.
[8] 李晓珍,柳俊哲,戴燕华,贺智敏,巴明芳,李玉顺. 碳化作用下水泥浆内亚硝酸根离子的含量分布[J]. 吉林大学学报(工学版), 2019, 49(4): 1162-1168.
[9] 于天来,李海生,黄巍,王思佳. 预应力钢丝绳加固钢筋混凝土梁桥抗剪性能[J]. 吉林大学学报(工学版), 2019, 49(4): 1134-1143.
[10] 黄晓明,曹青青,刘修宇,陈嘉颖,周兴林. 基于路表分形摩擦理论的整车雨天制动性能模拟[J]. 吉林大学学报(工学版), 2019, 49(3): 757-765.
[11] 王静,吕翔,曲肖龙,钟春玲,张云龙. 路基土抗剪强度与化学及矿物成分的关系[J]. 吉林大学学报(工学版), 2019, 49(3): 766-772.
[12] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[13] 念腾飞, 李萍, 林梅. 冻融循环下沥青特征官能团含量与流变参数灰熵分析及微观形貌[J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[14] 臧国帅, 孙立军. 基于惰性弯沉点的刚性下卧层深度设置方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[15] 宫亚峰, 申杨凡, 谭国金, 韩春鹏, 何钰龙. 不同孔隙率下纤维土无侧限抗压强度[J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!