吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1396-1404.doi: 10.13229/j.cnki.jdxbgxb20200431

• 计算机科学与技术 • 上一篇    

基于多尺度注意力融合和卷积神经网络的水下图像恢复

王德兴(),吴若有,袁红春(),宫鹏,王越   

  1. 上海海洋大学 信息学院,上海 201306
  • 收稿日期:2020-06-17 出版日期:2021-07-01 发布日期:2021-07-14
  • 通讯作者: 袁红春 E-mail:dxwang@shou.edu.cn;hcyuan@shou.edu.cn
  • 作者简介:王德兴(1968-),男,副教授,博士. 研究方向:人工智能,模式识别和数据挖掘.E-mail: dxwang@shou.edu.cn
  • 基金资助:
    国家自然科学基金项目(41776142)

Underwater image restoration based on multi-scale attention fusion and convolutional neural network

De-xing WANG(),Ruo-you WU,Hong-chun YUAN(),Peng GONG,Yue WANG   

  1. School of Information,Shanghai Ocean University,Shanghai 201306,China
  • Received:2020-06-17 Online:2021-07-01 Published:2021-07-14
  • Contact: Hong-chun YUAN E-mail:dxwang@shou.edu.cn;hcyuan@shou.edu.cn

摘要:

由于水中悬浮粒子对光的吸收和散射,导致原始水下图像清晰度低、细节模糊和颜色失真,针对这些问题,提出了一种基于多尺度注意力融合和卷积神经网络CNN的水下图像恢复方法。利用注意力机制构造SC(Space channel)模块,通过在多尺度特征提取中加入SC模块,可以有效地提取图像中的信息,实现图像清晰度的提高和颜色校正。利用拉普拉斯算子构造多项损失函数,进一步增强图像细节特征,使得恢复后的图像质量得到显著提升。将本文方法与其他方法在两个测试集上进行定性和定量的对比,实验结果表明,本文方法恢复后的图像在图像清晰度、细节增强和颜色校正方面都优于其他方法。

关键词: 信息处理技术, 水下图像恢复, 注意力机制, 拉普拉斯算子, 卷积神经网络

Abstract:

Due to the absorption and scattering of light by suspended particles in water, the original underwater image has a low definition, fuzzy details, and color distortion. To solve these problems, an underwater image recovery method based on multi-scale attention fusion and Convolutional Neural Network (CNN) is proposed. First,the Space Channel (SC) module is constructed by using the attention mechanism. Then, by adding the SC module into the multi-scale feature extraction, the information in the image can be extracted effectively, and the image sharpness and color correction can be realized. Finally, the Laplacian operator is used to construct the multiple loss functions to further enhance the detail features of the image, so that the recovered image quality can be significantly improved. The method in this paper is compared with other methods qualitatively and quantitatively on the two test sets. The experimental results show that this method is superior to other methods in image sharpness, detail enhancement, and color correction.

Key words: information processing technology, underwater image recovery, attention mechanism, Laplacian operator, convolutional neural network

中图分类号: 

  • TP391.4

图1

模型架构图"

图2

SC模块"

图3

通道注意力和空间注意力模块"

表1

MSCANet(无LDDL)和MSCANet(有LDDL)在测试集A上的PSNR和SSIM值"

方 法PSNRSSIM
MSCANet(无LDDL26.29370.9252
MSCANet(有LDDL26.33810.9278

表2

MSCANet(无LDDL)和MSCANet(有LDDL)在测试集B上的可见边缘分数和信息熵"

方 法rˉσIE
MSCANet(无LDDL1.82370.00787.3965
MSCANet(有LDDL2.03500.00437.4115

表3

MSCANet和CNN在测试集A上的实验结果"

方 法PSNRSSIM
MSCANet26.33810.9278
CNN26.14390.9198

表4

MSCANet和CNN在测试集B上的实验结果"

方 法SSEQ 27NIQE 28

OG?

IQA 29

UIQM 30
MSCANet21.03295.14190.84155.1436
CNN22.16635.25000.75874.6905

图4

不同方法在测试集A上的定性对比"

表5

不同方法在测试集A上的定量对比"

MetricsPSNRSSIMMetricsPSNRSSIM
CLAHE16.47850.6227文献[1616.28420.7079
文献[1019.15300.8096文献[1722.35310.8366
文献[1418.08820.7351文献[2125.66450.8814
文献[1517.90680.7330本文26.33810.9278

图5

不同方法在测试集B上的定性对比"

表6

不同方法在测试集B上的定量对比"

MetricsSSEQNIQEOG?IQAUIQM
CLAHE28.67486.13070.79164.2140
文献[1022.64635.26260.80255.0043
文献[1421.11025.15310.83925.0128
文献[1521.30225.31240.82684.5545
文献[1632.21324.95410.61305.1146
文献[1726.30407.15620.80164.7900
文献[2126.58955.21950.74214.8943
本文21.03295.14190.84155.1436
1 Meline A, Triboulet J, Jouvencel B. Comparative study of two 3D reconstruction methods for underwater archaeology[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 2012: 740-745.
2 Skarlatos D, Agrafifiotis P, Menna F, et al. Ground control networks for underwater photogrammetry in archaeological excavations[C]∥Proceedings of the 3rd IMEKO International Conference on Metrology for Archaeology and Cultural Heritage,Lecce, Italy, 2017: 23-25.
3 Chuang M C, Hwang J N, Williams K. A feature learning and object recognition framework for underwater fish images[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1862-1872.
4 Shkurti F, Xu A, Meghjani M, et al. Multi-domain monitoring of marine environments using a heterogeneous robot team[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems,Vilamoura, Portugal, 2012: 1747-1753.
5 Wang X, Li Q, Yin J, et al. An adaptive denoising and detection approach for underwater sonar image[J]. Remote Sensing, 2019, 11(4): No.396.
6 Zeng L, Sun B, Zhang W, et al. Underwater Image Target Detection with Cascade Classifier and Image Preprocessing Method[C]∥International Conference on Intelligent Robotics and Applications, Shenyang, China, 2019: 195-205.
7 Güraksin G E, Köse U, Deperlioğlu Ö. Underwater image enhancement based on contrast adjustment via differential evolution algorithm[C]∥International Symposium on Innovations in Intelligent Systems and Applications, Sinaia, Romania, 2016: 1-5.
8 Henke B, Vahl M, Zhou Z. Removing color cast of underwater images through non-constant color constancy hypothesis[C]∥The 8th International Symposium on Image and Signal Processing and Analysis, Trieste, Italy, 2013: 20-24.
9 Ancuti C O, Ancuti C, de Vleeschouwer C, et al. Locally adaptive color correction for underwater image dehazing and matching[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, USA, 2017: 1-9.
10 Zhang W, Li G, Ying Z. A New Underwater Image Enhancing Method via Color Correction and Illumination Adjustment[C]∥IEEE Visual Communications and Image Processing, USA: IEEE, 2017: 1-4.
11 Zou W, Wang X, Li K, et al. Self-tuning underwater image fusion method based on dark channel prior[C]∥IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 2016: 788-793.
12 Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2011, 21(4): 1756-1769.
13 Akkaynak D, Treibitz T. A revised underwater image formation model[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 6723-6732.
14 Li C Y, Guo J C, Cong R M, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Transactions on Image Processing, 2016, 25(12): 5664-5677.
15 Berman D, Levy D, Avidan S, et al. Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset [EB/OL]∥[2020-06-13]. .
16 Li C, Anwar S, Porikli F. Underwater scenes prior inspired deep underwater image and video enhancement[J]. Pattern Recognition, 2020, 98: 107038.
17 Li C, Guo C, Ren W, et al. An Underwater Image Enhancement Benchmark Dataset and Beyond [EB/OL]. [2020-06-13]. .
18 徐岩, 孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报:工学版, 2018, 48(6): 1895-1903.
Xu Yan, Sun Mei-shuang. Underwater image enhancement method based on convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1895-1903.
19 Li J, Skinner K A, Eustice R M, et al. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 387-394.
20 Lu J, Li N, Zhang S, et al. Multi-scale adversarial network for underwater image restoration[J]. Optics & Laser Technology, 2019, 110: 105-113.
21 Islam M J, Xia Y, Sattar J. Fast underwater image enhancement for improved visual perception[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227-3234.
22 Zhang B, Jin S, Xia Y, et al. Attention Mechanism Enhanced Kernel Prediction Networks for Denoising of Burst Images[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020: 2083-2087.
23 Chen D, He Z, Cao Y, et al. Deep neural network for fast and accurate single image super-resolution via channel-attention-based fusion of orientation-aware features [EB/OL].[2020-06-13]. .
24 Li H, Qiu K, Chen L, et al. SCAttNet: semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2020,18(5):905-909.
25 Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3-19.
26 Hautière N, Tarel J P, Aubert D, et al. Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Analysis & Stereology, 2008, 27(2): 87-95.
27 Liu L, Liu B, Huang H, et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing: Image Communication, 2014, 29(8): 856-863.
28 Mittal A, Soundararajan R, Bovik A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2012, 20(3): 209-212.
29 Liu L, Hua Y, Zhao Q, et al. Blind image quality assessment by relative gradient statistics and adaboosting neural network[J]. Signal Processing: Image Communication, 2016, 40: 1-15.
30 Panetta K, Gao C, Agaian S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2015, 41(3): 1-11.
[1] 赵亚慧,杨飞扬,张振国,崔荣一. 基于强化学习和注意力机制的朝鲜语文本结构发现[J]. 吉林大学学报(工学版), 2021, 51(4): 1387-1395.
[2] 李厚杰,王法胜,贺建军,周瑜,李威,窦宇轩. 基于伪样本正则化Faster R⁃CNN的交通标志检测[J]. 吉林大学学报(工学版), 2021, 51(4): 1251-1260.
[3] 蒋华伟,杨震,张鑫,董前林. 图像去雾算法研究进展[J]. 吉林大学学报(工学版), 2021, 51(4): 1169-1181.
[4] 金静,党建武,王阳萍,申东. 融合模糊统计纹理特征的多线索粒子滤波跟踪[J]. 吉林大学学报(工学版), 2021, 51(3): 1111-1120.
[5] 刘元宁,吴迪,朱晓冬,张齐贤,李双双,郭书君,王超. 基于YOLOv3改进的用户界面组件检测算法[J]. 吉林大学学报(工学版), 2021, 51(3): 1026-1033.
[6] 郭继昌,乔珊珊. 基于深度图的水下图像复原[J]. 吉林大学学报(工学版), 2021, 51(2): 677-684.
[7] 赵海英,周伟,侯小刚,张小利. 基于多任务学习的传统服饰图像双层标注[J]. 吉林大学学报(工学版), 2021, 51(1): 293-302.
[8] 李志军,杨楚皙,刘丹,孙大洋. 基于深度卷积神经网络的信息流增强图像压缩方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1788-1795.
[9] 赵宏伟,刘晓涵,张媛,范丽丽,龙曼丽,臧雪柏. 基于关键点注意力和通道注意力的服装分类算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1765-1770.
[10] 刘国华,周文斌. 基于卷积神经网络的脉搏波时频域特征混叠分类[J]. 吉林大学学报(工学版), 2020, 50(5): 1818-1825.
[11] 王柯俨,王迪,赵熹,陈静怡,李云松. 基于卷积神经网络的联合估计图像去雾算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1771-1777.
[12] 史再峰,李金卓,曹清洁,李慧龙,胡起星. 基于生成对抗网络的低剂量能谱层析成像去噪算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1755-1764.
[13] 车翔玖,董有政. 基于多尺度信息融合的图像识别改进算法[J]. 吉林大学学报(工学版), 2020, 50(5): 1747-1754.
[14] 谌华,郭伟,闫敬文,卓文浩,吴良斌. 基于深度学习的SAR图像道路识别新方法[J]. 吉林大学学报(工学版), 2020, 50(5): 1778-1787.
[15] 张薇,韩勇,金铭,乔晓林. 基于托普利兹矩阵集重构的相干信源波达方向估计[J]. 吉林大学学报(工学版), 2020, 50(2): 703-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!