吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (6): 1982-1989.doi: 10.13229/j.cnki.jdxbgxb20200600

• 车辆工程·机械工程 • 上一篇    

控制输入受限的板球系统滚动线性二次型调节器控制

韩光信1(),赵聚乐2,胡云峰3   

  1. 1.吉林化工学院 信息与控制工程学院,吉林省 吉林市 132022
    2.东北电力大学 电气工程学院,吉林省 吉林市 132011
    3.吉林大学 通信工程学院,长春 130022
  • 收稿日期:2020-08-10 出版日期:2021-11-01 发布日期:2021-11-15
  • 作者简介:韩光信(1971-),男,教授,博士. 研究方向:非线性约束系统控制. E-mail:hangeorge517@163.com
  • 基金资助:
    国家自然科学基金青年基金项目(61703177)

Moving horizon linear quadratic regulator control for ball and plate system with input constraints

Guang-xin HAN1(),Ju-le ZHAO2,Yun-feng HU3   

  1. 1.College of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin 132022,China
    2.College of Electrical Engineering,Northeast Electric Power University,Jilin 132011,China
    3.College of Communication Engineering,Jilin University,Changchun 130022,China
  • Received:2020-08-10 Online:2021-11-01 Published:2021-11-15

摘要:

为了实现板球系统高精度的轨迹跟踪目标,首先根据目标轨迹,利用微分平坦技术得到前馈控制量和目标状态量。然后,基于目标状态建立偏差系统,结合预测控制中的滚动优化思想设计了滚动线性二次型(LQR)控制器。最后,考虑到被控对象输入受限的情况,在变椭圆域约束的条件下优化控制系统性能,并通过本地管理接口(LMI)求解出控制器。仿真结果显示,在输入受限的情况下,板球系统具有良好的轨迹跟踪性能、稳态性能和鲁棒性能。

关键词: 自动控制技术, 板球系统, 输入受限, 微分平坦, 滚动线性二次型控制, 变椭圆域约束

Abstract:

This paper studies the trajectory tracking control of ball and plate system with actuator dynamic being considered. To realize precise trajectory tracking control, three steps are included as following. Firstly, according to the target trajectory, the feedforward control and target state are obtained using differential flatness technology. Secondly, tracking error system is established according to the target state and then a moving horizon Linear-Quadratic Regulator (LQR) controller is designed based on one of three fundamental principles of model predictive control. Thirdly, considering the practical constraints of control inputs, the target controller is achieved by solving Linear Matrix Inequalities(LMIs) under the condition of variable elliptic domain limits. Simulation results show that the closed-loop system has good trajectory tracking performance, steady state performance and robust performance under input constraints.

Key words: automatic control technology, ball and plate system, input constraints, differential flat, moving horizon linear quadratic regulator (LQR) control, variable elliptic domain limits

中图分类号: 

  • TP273

图1

Quanser板球系统实验台"

图2

直流伺服系统原理图"

图3

模型简化前、后的对比结果"

图4

梅花形轨迹跟踪曲线"

图5

轨迹跟踪偏差"

图6

放大后的轨迹跟踪偏差"

图7

滚动LQR控制输入"

图8

内部扰动下的跟踪轨迹"

图9

外部扰动下的跟踪轨迹"

1 Huang Jiang-shuai, Wen Cang-yun, Wang Wei, et al. Global stable tracking control of underactuated ships with input saturation[J]. Systems & Control Letters, 2015, 85: 1-7.
2 Shojaei K.Neural adaptive robust control of underactuated marine surface vehicles with input saturation[J]. Applied Ocean Research, 2015, 53: 267-278.
3 陈谋, 杨青运, 周砚龙, 等. 近空间飞行器鲁棒受限控制技术[M]. 北京:国防工业出版社,2017.
4 Wang Chen, Han Guang-xin. Variable structure PID control of four-tank system with input constaints[C]∥2018 International Conference on New Material and Intelligent Manufacturing, Jilin, China, 2018: 377-380.
5 于树友, 常欢, 孟凌宇, 等. 基于扰动观测器的轮式移动机器人滚动时域路径跟踪控制[J]. 吉林大学学报: 工学版, 2021, 51(3):1097-1105.
Yu Shu-you, Chang Huan, Meng Ling-yu, et al. Disturbance observer based moving horizon control for path following problems of wheeled mobile robots[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(3): 1097-1105.
6 Shaojaei K. Observer-based neural adaptive formation control of autonomous surface vessels with limited torque[J]. Robotics & Autonomous Systems, 2016, 78(C): 83-96.
7 Sun Ming-xiao, Luan Tian-tian, Liang Li-hua. RBF neural network compensation-based adaptive control for lift-feedback system of ship fin stabilizers to improve anti-rolling effect[J]. Ocean Engineering, 2018, 163(1): 307-321.
8 孙丽颖, 王新, 白锐. 考虑输入约束的半主动悬架非线性自适应控制[J]. 控制与决策, 2018, 33(11): 2099-2103.
Sun Li-ying, Wang Xin, Bai Rui. Nonlinear adaptive control for semi-active suspension with input constraints[J]. Control and Decision, 2018, 33(11): 2099-2103.
9 韩光信, 胡云峰. 轮式机器人执行机构动态跟踪优化控制研究[J]. 计算机仿真, 2016, 33(12): 300-304.
Han Guang-xin, Hu Yun-feng. Study on actuator dynamics tracking optimization control of wheeled mobile robots[J]. Computer Simulation, 2016, 33(12): 300-304.
10 曹洋洋, 林意, 王智博, 等. 基于双曲正切函数约束的时间序列建模表示[J]. 计算机工程与应用, 2018, 54(18): 82-89.
Cao Yang-yang, Lin Yi, Wang Zhi-bo, et al. Time series modeling representation based on hyperbolic tangent function constraints[J]. Computer Engineering and Applications, 2018, 54(18):82-89.
11 Chen Hao-lan, Zhou Jun, Zhou Min, et al. Nussbaum gain adaptive control scheme for moving mass reentry hypersonic vehicle with actuator saturation[J]. Aerospace Science and Technology, 2019, 91: 357-371.
12 Zhang Li-li, Chen Bing, Lin Chong. Adaptive neural consensus tracking control for a class of 2-order multi-agent systems with nonlinear dynamics[J]. Neurocomputing, 2020, 404: 84-92.
13 Koksal N, An H, Fidan B. Backstepping-based adaptive control of a quadrotor UAV with guaranteed tracking performance[J]. ISA Transactions, 2020, 105: 98-110.
14 翟晨汐,李洪兴.板球系统的直接自适应模糊滑模控制[J]. 计算机仿真, 2016, 33(2): 383-388, 432.
Zhai Chen-xi, Li Hong-xing. Direct adaptive fuzzy sliding mode control for ball and plate system[J], Computer Simulation, 2016,33(2): 383-388, 432.
15 张英慧. 板球系统自适应控制算法与实验研究[D]. 长春:吉林大学通信工程学院, 2013.
Zhang Ying-hui. On the adaptive control algorithm and experimentation of ball and plate system[D]. Changchun:College of Communication, Jilin University, 2013.
16 韩京元, 田彦涛, 孔英秀, 等. 板球系统自适应解耦滑模控制[J]. 吉林大学学报:工学版, 2014, 44(3): 718-725.
Han Jing-yuan, Tian Yan-tao, Kong Ying-xiu, et al. Adaptive decoupled sliding mode control for the ball and plate system [J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(3): 718-725.
17 Didier H, Simone N, Mohab S E D. SPECTRA—a maple library for solving linear matrix inequalities in exact arithmetic[J]. Optimization Methods and Software, 2017, 34(1): 62-78.
18 鲜永菊,扶坤荣,吴周青,等.一个新三维混沌系统及其自适应滑模同步控制[J].重庆邮电大学学报:自然科学版, 2020, 32(2): 278-286.
Xian Yong-ju, Fu Kun-rong, Wu Zhou-qing,et al. A new 3-D chaotic system and its adaptive sliding mode synchronization control[J]. JJournal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2020, 32(2): 278-286.
19 曹伟,徐凤霞,张剑飞,等.网络控制系统中迭代学习控制算法的鲁棒收敛性分析[J].重庆邮电大学学报:自然科学版,2020,32(1):15-22.
Cao Wei, Xu Feng-xia, Zhang Jian-fei,et al. Robust convergence of iterative learning control for networked control systems[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020, 32(1): 15-22.
20 刘志林, 张军, 原新. 复杂系统的应用鲁棒预测控制[M]. 北京:电子工业出版社,2017.
21 赵聚乐, 韩光信. 基于粒子群优化的板球系统双闭环滑模控制[J]. 吉林化工学院学报, 2020, 37(1):63-67.
Zhao Ju-le, Han Guang-xin. Double closed loop sliding mode control of ball and plate system based on particle swarm optimization[J]. Journal of Jilin Institute of Chemical Technology, 2020, 37(1): 63-67.
[1] 于树友,常欢,孟凌宇,郭洋,曲婷. 基于扰动观测器的轮式移动机器人滚动时域路径跟踪控制[J]. 吉林大学学报(工学版), 2021, 51(3): 1097-1105.
[2] 吴爱国,韩俊庆,董娜. 基于极局部模型的机械臂自适应滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1905-1912.
[3] 王伟,赵健廷,胡宽荣,郭永仓. 基于快速非奇异终端滑模的机械臂轨迹跟踪方法[J]. 吉林大学学报(工学版), 2020, 50(2): 464-471.
[4] 刘富,安毅,董博,李元春. 基于ADP的可重构机械臂能耗保代价分散最优控制[J]. 吉林大学学报(工学版), 2020, 50(1): 342-350.
[5] 曲兴田,王学旭,孙慧超,张昆,闫龙威,王宏一. 熔融沉积成型技术3D打印机加热系统的模糊自适应PID控制[J]. 吉林大学学报(工学版), 2020, 50(1): 77-83.
[6] 马常友, 高海波, 丁亮, 于海涛, 邢宏军, 邓宗全. 机器人末端执行器自更换机构设计及对接策略[J]. 吉林大学学报(工学版), 2019, 49(6): 2027-2037.
[7] 马苗苗,潘军军,刘向杰. 含电动汽车的微电网模型预测负荷频率控制[J]. 吉林大学学报(工学版), 2019, 49(5): 1644-1652.
[8] 于树友,谭雷,王伍洋,陈虹. 基于三步法的汽车主动四轮转向控制[J]. 吉林大学学报(工学版), 2019, 49(3): 934-942.
[9] 温海营,任翔,徐卫良,丛明,秦文龙,胡书海. 咀嚼机器人颞下颌关节仿生设计及试验测试[J]. 吉林大学学报(工学版), 2019, 49(3): 943-952.
[10] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[11] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[12] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[15] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!