吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (1): 144-153.doi: 10.13229/j.cnki.jdxbgxb20200758

• 交通运输工程·土木工程 • 上一篇    

考虑适用性的大跨桥梁主梁动态可靠性融合预测

樊学平1,2(),杨光红2,尚志鹏2,赵小雄2,肖青凯3,刘月飞1,2   

  1. 1.兰州大学 西部灾害与环境力学教育部重点实验室,兰州 730030
    2.兰州大学 土木工程与力学学院,兰州 730030
    3.华南理工大学 土木与交通学院,广州 510641
  • 收稿日期:2020-10-05 出版日期:2022-01-01 发布日期:2022-01-14
  • 作者简介:樊学平(1983-),男,副教授,博士.研究方向:桥梁结构安全预后与损伤预后. E-mail:fxp_2004@163.com
  • 基金资助:
    国家重点研发计划项目(2019YFC1511005);国家自然科学基金项目(51608243);中央高校面上基金项目(lzujbky-2020-55)

Dynamic reliability fusion prediction of long-span bridge girder considering structural serviceability

Xue-ping FAN1,2(),Guang-hong YANG2,Zhi-peng SHANG2,Xiao-xiong ZHAO2,Qing-kai XIAO3,Yue-fei LIU1,2   

  1. 1.Key Laboratory of Mechanics on Disaster and Environment in Western China of the Ministry of Education,Lanzhou University,Lanzhou 730030,China
    2.School of Civil Engineering and Mechanics,Lanzhou University,Lanzhou 730030,China
    3.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510641,China
  • Received:2020-10-05 Online:2022-01-01 Published:2022-01-14

摘要:

为合理预测考虑适用性的大跨桥梁主梁动态可靠性,利用主梁控制监测点的动态极值挠度信息,建立了多维Gaussian Copula技术、多变量贝叶斯动态线性模型(MBDLM)以及一次二阶矩(FOSM)方法相融合地考虑控制点变形失效非线性相关的大跨桥梁主梁体系动态可靠性预测方法。采用某大跨桥梁主梁3个控制监测点的动态监测极值挠度数据进行验证分析,研究表明:考虑适用性的控制监测点变形失效非线性相关的主梁动态可靠性预测值较不考虑控制监测点变形失效非线性相关性所得结果大,说明不考虑失效动态非线性相关性所得结果偏保守。

关键词: 结构工程, 多维Gaussian Copula技术, 多变量贝叶斯动态线性模型, 一次二阶矩方法, 动态可靠性预测

Abstract:

To reasonably predict serviceability-based dynamic reliability of the long-span bridge girder, using the dynamic extreme deflection data at the control monitoring points, a dynamic serviceability reliability prediction approach for the long-span bridge girder is presented through the fusion of multi-dimensional Gaussian copula technique, multivariate Bayesian dynamic linear models (MBDLM) and the First Order Second Moment(FOSM) method. In this approach, the nonlinear correlations among the performance functions for deformation failure modes at the multiple control monitoring points are taken into consideration. The dynamic monitoring extreme deflection data at three control monitoring points from a long-span bridge girder was provided to illustrate the proposed models and methods. The results show that the predicted dynamic reliability of the bridge girder, considering the time-variant nonlinear correlation of deformation failure modes at the multiple control monitoring points, is larger than that without considering the time-dependent nonlinear correlation of deformation failure modes. This suggests that the predicted results without considering the time-variant nonlinear correlation of deformation failure modes at the multiple control monitoring points are conservative.

Key words: structural engineering, multi-dimensional Gaussian Copula technique, multivariate Bayesian dynamic linear models, first order second moment method, dynamic reliability prediction

中图分类号: 

  • TU391

图1

MBDLM的建模流程图"

图2

4#监测梁及其监测点的位置"

图3

3个控制监测点的极值挠度数据"

图4

预测的极值挠度数据和预测精度"

图5

A点预测的可靠指标和失效概率"

图6

B点预测的可靠指标和失效概率"

图7

C点预测的可靠指标和失效概率"

图8

动态预测的相关系数"

图9

4#箱梁动态预测的失效概率"

图10

4#箱梁动态预测的可靠指标"

1 宗周红, 周儒勉, 郑沛娟. 基于健康监测的桥梁结构损伤预后和安全预后研究进展及挑战[J]. 中国公路学报, 2014, 27(12): 46-57.
Zong Zhou-hong, Zhou Ru-mian, Zheng Pei-juan. Damage and safety prognosis of bridge structures based on structural health monitoring: progress and challenges [J]. China Journal of Highway and Transport, 2014, 27(12): 46-57.
2 魏锦辉, 任伟新. 基于响应面方法的桥梁静动力有限元模型修正[J]. 公路交通科技, 2015, 32(2): 68-73.
Wei Jin-hui, Ren Wei-xin. Static and dynamic bridge finite element model updating based on response surface method [J]. Journal of Highway and Transportation Research and Development, 2015, 32(2): 68-73.
3 Frangopol D M, Strauss A, Kim S Y. Use of monitoring extreme data for the performance prediction of structures: general approach [J]. Engineering Structures, 2008, 30(12): 3644-3653.
4 Strauss A, Frangopol D M, Kim S Y. Use of monitoring extreme data for the performance prediction of structures: Bayesian updating [J]. Engineering Structures, 2008, 30(12): 3654-3666.
5 樊学平. 基于验证荷载和监测数据的桥梁可靠性修正与贝叶斯预测[D]. 哈尔滨: 哈尔滨工业大学土木工程学院, 2014.
Fan Xue-ping. Bridge reliability updating and Bayesian prediction based on proof loads and monitored data[D]. Harbin:School of Civil Engineering, Harbin Institute of Technology, 2014.
6 Jiang C, Zhang W, Wang B, et al. Structural reliability analysis using a copula-function-based evidence theory model [J]. Computers and Structures, 2014, 143: 19-31.
7 Liu Y, Zhang H P, Li D R, et al. Fatigue reliability assessment for orthotropic steel deck details using copulas: application to Nan-Xi Yangtze river bridge [J]. Journal of Bridge Engineering, 2017, 23(1): No.04017123.
8 Liu Y F, FAN X P. Gaussian Copula-Bayesian dynamic linear model-based time-dependent reliability prediction of bridge structures considering nonlinear correlation between failure modes [J]. Advances in Mechanical Engineering, 2016, 8(11): 1-15.
9 Fan X P, Liu Y F. Time-variant reliability prediction of bridge system based on BDGCM and SHM data [J]. Structural Control and Health Monitoring, 2018, 25(7): 1-16.
10 张建仁, 鲍勇军, 王磊, 等. 考虑不同失效模式的钢筋混凝土梁时变可靠度分析[J]. 交通科学与工程, 2011, 27(4): 18-23, 30.
Zhang Jian-ren, Bao Yong-jun, Wang Lei, et al. Time-dependent reliability analysis of reinforced concrete beam under different failure modes [J]. Journal of Transport Science and Engineering, 2011, 27(4): 18-23, 30.
11 王向阳, 林友杨. 基于Copula函数的桥梁失效模式相关性研究[J]. 交通科学与工程, 2017, 33(2): 18-22.
Wang Xiang-yang, Lin You-yang. Research on the correlation of bridge failure modes based on Copula function[J]. Journal of Transport Science and Engineering, 2017, 33(2): 18-22.
12 Liu Y F, Fan X P. Time-independent reliability analysis of bridge system based on mixed copula models[J]. Mathematical Problems in Engineering, 2016,2016(1): 1-13.
13 刘月飞. 考虑失效模式和验证模式相关性的桥梁结构体系可靠度分析[D]. 哈尔滨: 哈尔滨工业大学航天学院, 2015.
Liu Yue-fei. System reliability analysis of bridge structures considering correlation of failure modes and proof modes[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2015.
14 刘月飞, 樊学平. 失效非线性相关的桥梁截面可靠性Vine-Copula数据融合[J]. 同济大学学报:自然科学版, 2019, 47(3): 315-321.
Liu Yue-fei, Fan Xue-ping. Data fusion about Vine-Copula for bridge section reliability considering nonlinear correlation of failure modes [J]. Journal of Tongji University (Natural Science), 2019, 47(3): 315-321.
15 樊学平, 杨光红, 刘月飞, 等. 考虑安全性的桥梁主梁体系可靠性动态藤Copula预测方法[J]. 同济大学学报:自然科学版, 2020, 48(2): 165-175.
Fan Xue-ping, Yang Guang-hong, Liu Yue-fei, et al. Dynamic vine-copula prediction approach of bridge girder system reliability considering structural safety[J]. Journal of Tongji University (Natural Science), 2020, 48(2): 165-175.
16 肖青凯. 基于Vine copula和贝叶斯动态模型的桥梁可靠性研究[D]. 兰州: 兰州大学土木工程与力学学院, 2018.
Xiao Qing-kai. Research on bridge reliability based on vine-Copula and Bayesian dynamic models [D]. Lanzhou: College of Civil Engineering and Mechanics, Lanzhou University, 2018.
17 West M, Harrison J. Bayesian forecasting and dynamic models [M]. 2nd. New York: Springer, 1997.
18 Petris G, Petrons S, Campagnoli P. Dynamic linear models with R [M]. New York: Springer, 2009.
19 Melchers R E. Structural reliability, analysis and prediction[M]. Chichester: Ellis Horwood Ltd, 1987.
20 Ang H S, Tang W H. Probability concepts in engineering planning and design (Vol. II) [M]. New York: John Wiley and Sons Ltd, 1984.
21 王震. 基于桥梁长期健康监测的数据特征分析与可靠度计算[D]. 广州: 华南理工大学土木与交通学院, 2014.
Wang Zhen. Characteristics analysis and reliability calculation based on long-term bridge health monitoring data[D]. Guangzhou: School of Civil Engineering and Transportation,South China University of Technology, 2014.
22 李英华. 基于长期健康监测的连续刚构梁桥的性能分析与演化规律研究[D]. 广州: 华南理工大学土木与交通学院, 2012.
Li Ying-hua. Performance analysis and evolution of continuous rigid frame bridge based on long-term health monitoring[D]. Guangzhou: School of Civil Engineering and Transportation, South China University of Technology, 2012.
23 Yang J, Dewolf J T. Reliability assessment of highway truss sign supports[J]. Journal of Structural Engineering, 2002, 128(11):1429-1438.
[1] 刘福寿,魏琦,徐文婷,谭国金. 基于弹性波传播和谱单元法的桁架结构损伤检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2087-2095.
[2] 樊学平,杨光红,肖青凯,刘月飞. 大跨桥梁主梁失效概率分析的最优R-Vine Copula[J]. 吉林大学学报(工学版), 2021, 51(4): 1296-1305.
[3] 于江,赵志浩,秦拥军. 基于声发射和分形的钢筋混凝土受剪梁损伤[J]. 吉林大学学报(工学版), 2021, 51(2): 620-630.
[4] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[5] 樊学平,屈广,刘月飞. 应用新数据同化算法的桥梁极值应力预测[J]. 吉林大学学报(工学版), 2020, 50(2): 572-580.
[6] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[7] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[8] 杨昕卉, 薛伟, 郭楠. 钢板增强胶合木梁的抗弯性能[J]. 吉林大学学报(工学版), 2017, 47(2): 468-477.
[9] 王少杰, 徐赵东, 李舒, 王凯洋,Dyke Shirley J. 基于应变监测的连续梁支承差异沉降识别[J]. 吉林大学学报(工学版), 2016, 46(4): 1090-1096.
[10] 宿晓萍,王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1): 112-120.
[11] 姜浩, 郭学东. 基于地震激励的混凝土桥梁模态参数识别[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 185-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!