吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (3): 615-625.doi: 10.13229/j.cnki.jdxbgxb20200855

• 交通运输工程·土木工程 • 上一篇    

下击暴流作用下双面球壳型屋面风载特性

姚勇1,2(),苏留锋1(),李明3,褚云朋1,黄汉杰3   

  1. 1.西南科技大学 土木工程与建筑学院,四川 绵阳 621000
    2.西南科技大学 工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621000
    3.中国空气动力研究与发展中心,四川 绵阳 621000
  • 收稿日期:2020-11-06 出版日期:2022-03-01 发布日期:2022-03-08
  • 通讯作者: 苏留锋 E-mail:yy001221@163.com;344107296@qq.com
  • 作者简介:姚勇(1972-),男,教授,博士. 研究方向:结构工程,岩土工程. E-mail:yy001221@163.com
  • 基金资助:
    四川省科技厅基础研究项目(2019YJ0322)

Wind load characteristics of double⁃sided spherical shell roof under downburst

Yong YAO1,2(),Liu-feng SU1(),Ming LI3,Yun-peng CHU1,Han-jie HUANG3   

  1. 1.School of Civil Engineering and Architecture,Southwest University of Science and Technology,Mianyang 621000,China
    2.Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province,Southwest University of Science and Technology,Mianyang 621000,China
    3.China Aerodynamics Research and Development Center,Mianyang 621000,China
  • Received:2020-11-06 Online:2022-03-01 Published:2022-03-08
  • Contact: Liu-feng SU E-mail:yy001221@163.com;344107296@qq.com

摘要:

为研究下击暴流作用下双面球壳型屋面在平地及坡地地形中的屋面风压分布特性,基于相似准则制作了刚性缩尺模型,通过风洞试验研究了两种地形中模型所处流场位置的变化对其屋面平均风压系数分布及其最大、最小值出现位置和数值大小的影响。结果表明:平地随径向距离的增大,上屋面迎风面平均风压系数由正值转变为负值,最大负值出现在迎风面边缘处;下屋面迎面平均风压系数值逐渐减小,但始终保持为正。坡地随径向距离的增大,上屋面平均风压系数均为负值且负值逐渐增大;下屋面迎风面平均风压系数由正值转变为负值,且最大负值出现在迎风面边缘处。模型在风场中所处的位置及不同地形条件对其上、下屋面平均风压系数正负的转变,最大、最小值出现的位置及其数值等风压系数分布特性均有较大影响。

关键词: 结构工程, 下击暴流, 不同地形, 双面球壳型屋面, 风洞试验, 风载特性

Abstract:

To study the wind pressure distribution characteristics of double-sided spherical shell roofs in flat and sloping terrain under the action of downbursts, a rigid scale model was made based on the similarity criterion. Through wind tunnel tests, the influence of the change of the flow field position of the model in the two terrains on the distribution of the average wind pressure coefficient of the roof and the position and value of the maximum and minimum values are studied. The results show that as the radial distance increases, the average wind pressure coefficient on the windward side of the upper roof changes from positive to negative, and the maximum negative value appears at the edge of the windward surface. The value of the face-on average wind pressure coefficient of the lower roof gradually decreases, but always remains positive. As the radial distance increases, the average wind pressure coefficient of the upper roof is always negative and the negative value gradually increases. The average wind pressure coefficient on the windward side of the lower roof changes from positive to negative, and the maximum negative value appears at the edge of the windward side. The location of the model in the wind field and the different topographic conditions have great influences on wind pressure distribution characteristics which include the positive and negative wind pressure transitions of the upper and lower roofs and the location of the extreme wind pressure and its numerical values.

Key words: structural engineering, downbrust, different topography, double-sided spherical shell roof, wind tunnel test, wind pressure characteristic

中图分类号: 

  • TU312

图1

下击暴流试验装置"

图2

平均风速随高度的变化曲线"

图3

下击暴流风场竖向剖面对比"

图4

双面球壳型模型示意图及测点布置"

图5

平地各工况模型位置示意图"

图6

喷口正下方时模型屋面风压分布"

图7

平地各工况模型上屋面风压分布图"

图8

平地上屋面中心线风压系数变化曲线"

图9

平地各工况模型下屋面风压分布图"

图10

平地下屋面中心线风压系数变化曲线"

图11

坡地各工况模型位置示意图"

图12

坡地各工况模型上屋面风压分布图"

图13

坡地上屋面中心线风压系数变化曲线"

图14

坡地各工况模型下屋面风压分布图"

图15

坡地各工况下屋面中心线风压系数变化曲线"

图16

两种地形上屋面中心线风压对比曲线"

图17

两种地形下屋面中心线风压对比曲线"

1 Holmes J D. Modeling of extreme thunderstorm winds for wind loading of structures and risk sssessment[C]∥Proceedings of 10th International Conference on Wind Engineering, Rotterdam, Denmark, 1999: 1409-1415.
2 Letchford C W, Mans C, Chay M T. Thunderstorms their importance in wind engineering: a case for the next generation wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15): 1415-1433.
3 Choi E C C, Tanurdjaja A. Extreme wind studiesin Singapore: an area with mixed weather system[J]. Journal of Wind Engineering&Industrial Aerodynamics, 2002, 90(12-15): 1611-1630.
4 Chen L, Letchford C W. Multi-scale correlation analysis oftwo lateral profiles of full scale downburst wind speeds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(9): 675-696.
5 Hjelmfelt M R. Structure and life circle of microburst out flows observed in Colorado[J]. Journal of Applied Meteorology, 1988, 27(8): 900-927.
6 Mason M S, Wood G S, Fletcher D F. Impinging jet simulation of stationary downburst flow over topography[J]. Wind and Structures, 2007, 10(5): 437-462.
7 Mason M S, Wood G S, Fletcher D F. Influence of tilt and surface roughness on the outflow wind field of an impinging jet[J]. Wind and Structures, 2009, 12(3): 179-204.
8 Mason M S, Wood G S, Fletcher D F. Numerical simulation of downburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(11/12): 523-539.
9 Mason M S. Numerical investigation of the influence of topography on simulated downburst wind fields[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(1): 21-33.
10 瞿伟廉, 梁政平. 下击暴流的特征及其对输电线塔风致倒塌的影响[J]. 地震工程与工程振动, 2010, 30(6): 120-126.
Qu Wei-lian, Liang Zheng-ping. Downburst's characteristics and its effect on wind-induced collapse of transmission tower[J]. Erathquake Engineering and Engineering Dynamics, 2010, 30(6): 120-126.
11 瞿伟廉, 王锦文. 下击暴流风荷载的数值模拟[J]. 武汉理工大学学报, 2008, 30(2): 70-74.
Qu Wei-lian, Wang Jin-wen. Numerical simulation of downburst wind loads[J]. Journal of Wuhan University of Technology, 2008, 30(2): 70-74.
12 Sengupta A, Haan F L, Sarkar P P, et al. Transient loads on buildings in microburst and tornado winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 2173-2187.
13 陈波,贾蕗宇,田晨. 下击暴流作用下平屋面风荷载CFD数值模拟[J]. 北京交通大学学报, 2013, 37(1): 140-144.
Chen Bo, Jia Lu-yu, Tian Chen. CFD numerical simulation of downburst wind effect on flat roofs[J]. Journal of Beijing Jiaotong University, 2013, 37(1): 140-144.
14 陈勇, 崔碧琪, 余世策, 等. 稳态冲击风作用下拱形屋面风压分布试验研究[J]. 工程力学, 2013, 30(7): 91-99.
Chen Yong, Cui Bi-qi, Yu Shi-ce, et al. Experimental study on the pressure distribution over arch-roof subjected to stationary downbursts[J]. Engineering Mechanics, 2013, 30(7): 91-99.
15 陈勇, 崔碧琪, 余世策, 等. 雷暴冲击风作用下球壳型屋面模型风压特性试验研究[J]. 建筑结构学报, 2011, 32(8): 26-33.
Chen Yong, Cui Bi-qi, Yu Shi-ce, et al. Experimental investigation of spherical roof subjected to thunderstorm downbursts[J]. Journal of Building Structures, 2011, 32(8): 26-33.
[1] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[2] 樊学平,杨光红,尚志鹏,赵小雄,肖青凯,刘月飞. 考虑适用性的大跨桥梁主梁动态可靠性融合预测[J]. 吉林大学学报(工学版), 2022, 52(1): 144-153.
[3] 刘福寿,魏琦,徐文婷,谭国金. 基于弹性波传播和谱单元法的桁架结构损伤检测[J]. 吉林大学学报(工学版), 2021, 51(6): 2087-2095.
[4] 樊学平,杨光红,肖青凯,刘月飞. 大跨桥梁主梁失效概率分析的最优R-Vine Copula[J]. 吉林大学学报(工学版), 2021, 51(4): 1296-1305.
[5] 于江,赵志浩,秦拥军. 基于声发射和分形的钢筋混凝土受剪梁损伤[J]. 吉林大学学报(工学版), 2021, 51(2): 620-630.
[6] 熊二刚,徐涵,谭赐,王婧,丁若愚. 基于弹塑性应力场理论的钢筋混凝土梁受剪承载力[J]. 吉林大学学报(工学版), 2021, 51(1): 259-267.
[7] 赖晨光,王擎宇,胡博,文凯平,陈彦宇. 静气动弹性影响下带小翼汽车尾翼的设计与优化[J]. 吉林大学学报(工学版), 2020, 50(2): 399-407.
[8] 樊学平,屈广,刘月飞. 应用新数据同化算法的桥梁极值应力预测[J]. 吉林大学学报(工学版), 2020, 50(2): 572-580.
[9] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[10] 周华,杨志刚,朱晖. 基于整车风洞试验的MIRA车型数值计算[J]. 吉林大学学报(工学版), 2019, 49(4): 1043-1053.
[11] 戴岩, 聂少锋, 周天华. 带环梁的方钢管约束钢骨混凝土柱-钢梁节点滞回性能有限元分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1426-1435.
[12] 杨昕卉, 薛伟, 郭楠. 钢板增强胶合木梁的抗弯性能[J]. 吉林大学学报(工学版), 2017, 47(2): 468-477.
[13] 王少杰, 徐赵东, 李舒, 王凯洋,Dyke Shirley J. 基于应变监测的连续梁支承差异沉降识别[J]. 吉林大学学报(工学版), 2016, 46(4): 1090-1096.
[14] 宿晓萍,王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1): 112-120.
[15] 韦甘, 杨志刚, 李启良. 基于分步遗传算法的车身气动优化[J]. 吉林大学学报(工学版), 2014, 44(6): 1578-1582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!