吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (3): 883-890.doi: 10.13229/j.cnki.jdxbgxb20221313
• 通信与控制工程 • 上一篇
陈珑茏1,2(),冯天宇1,2,吕宗阳1,3(),吴玉虎1,2
Long-long CHEN1,2(),Tian-yu FENG1,2,Zong-yang LYU1,3(),Yu-hu WU1,2
摘要:
针对受外界干扰的共轴倾转旋翼无人机姿态控制问题,设计了一种有限时间滑模控制器(FTSMC),以提高姿态控制的跟踪能力和在不确定干扰下的鲁棒性。采用牛顿-欧拉法建立了无人机姿态动力学模型,调整动力分配以克服无人机控制通道的过驱动。应用李雅普诺夫理论验证了有限时间滑模控制器的稳定性。最后,在Matlab/SimMechanics平台中进行仿真测试,以验证本文所设计控制器的性能。
中图分类号:
1 | Ryan A, Hedrick J K. A mode-switching path planner for UAV-assisted search and rescue[C]∥Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 2005: 1471-1476. |
2 | Rego B S, Raffo G V. Suspended load path tracking control based on zonotopic state estimation using a tilt-rotor UAV[C]∥2016 IEEE 19th International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016: 1445-1451. |
3 | 陈强, 许洪国, 谭立东. 基于小型无人机摄影测量的交通事故现场勘查[J]. 吉林大学学报:工学版, 2016, 46(5): 1439-1446. |
Chen Qiang, Xu Hong-guo, Tan Li-dong. Surveying method of traffic accident scene based on SUAV photogrammetry[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(5): 1439-1446. | |
4 | Papachristos C, Tzes A. Modeling and control simulation of an unmanned tilt tri-rotor aerial vehicle[C]∥2012 IEEE International Conference on Industrial Technology, Athens, Greece, 2012: 840-845. |
5 | Liu Z, He Y, Yang L, et al. Control techniques of tilt rotor unmanned aerial vehicle systems: a review[J]. Chinese Journal of Aeronautics, 2017, 30(1): 135-148. |
6 | Parham T. V-22 pilot-in-the-loop aeroelastic stability analysis[C]∥47th Annual Forum, Phoenix, AZ, 1991: 1307-1319. |
7 | Song Yan-guo, Wang Huan-jin. Design of flight control system for a small unmanned tilt rotor aircraft[J]. Chinese Journal of Aeronautics, 2009, 22(3): 250-256. |
8 | Ta D A, Fantoni I, Lozano R. Modeling and control of a tilt tri-rotor airplane[C]∥2012 American control conference (ACC), Montreal, QC, Canada, 2012: 131-136. |
9 | Xian B, Hao W. Nonlinear robust fault-tolerant control of the tilt trirotor UAV under rear servo's stuck fault: theory and experiments[J]. IEEE Transactions on Industrial Informatics, 2018, 15(4): 2158-2166. |
10 | Wang Zhi-gang, Zhao Hong, Duan Deng-yan, et al. Application of improved active disturbance rejection control algorithm in tilt quad rotor[J]. Chinese Journal of Aeronautics, 2020, 33(6): 1625-1641. |
11 | Kastelan D, Konz M, Rudolph J. Fully actuated tricopter with pilot-supporting control[J]. IFAC-PapersOnLine, 2015, 48(9): 79-84. |
12 | Gertler J. V-22 osprey tilt-rotor aircraft: background and issues for congress[C]∥Library of Congress Washington DC Congressional Research Service, Washington, USA, 2009: 1-57. |
13 | Fonte F, Favale M, Quaranta G, et al. Enhanced gust load recovery for the AW609 tiltrotor[C]∥45th European Rotorcraft Forum, Warsaw, Poland, 2019: 1-13. |
14 | 佚名. 中国航天空气动力技术研究院多款彩虹无人机亮相航展[J]. 军民两用技术与产品, 2021(10): 14-15. |
Anonymous. Multiple CH UAVs of China aerospace aerodynamics research institute appeared in the air show[J]. Dual Use Technologies & Products, 2021(10): 14-15. | |
15 | Franchi A, Carli R, Bicego D, et al. Full-pose tracking control for aerial robotic systems with laterally bounded input force[J]. IEEE Transactions on Robotics, 2018, 34(2): 534-541. |
16 | Li F, Xu W, Shi Y, et al. Multi-body dynamic modeling, simulation and control strategy design of a Y6 tilt rotor UAV[C]∥2017 2nd International Conference on Advanced Robotics and Mechatronics, Hefei and Tai'an, China, 2017: 373-379. |
17 | Cardoso D N, Raffo G V, Esteban S. A robust adaptive mixing control for improved forward flight of a tilt-rotor UAV[C]∥2016 IEEE 19th International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016: 1432-1437. |
18 | Cetinsoy E, Dikyar S, Hançer C, et al. Design and construction of a novel quad tilt-wing UAV[J]. Mechatronics, 2012, 22(6): 723-745. |
19 | Invernizzi D, Giurato M, Gattazzo P, et al. Comparison of control methods for trajectory tracking in fully actuated unmanned aerial vehicles[J]. IEEE Transactions on Control Systems Technology, 2020, 29(3): 1147-1160. |
20 | Ta D A, Fantoni I, Lozano R. Modeling and control of a tilt tri-rotor airplane[C]∥Proceedings of the American Control Conference, Montreal, QC, Canada, 2012: 131-136. |
21 | Cardoso D N, Esteban S, Raffo G V. A nonlinear W ∞ controller of a tilt-rotor UAV for trajectory tracking[C]∥18th European Control Conference, Naples, Italy, 2019: 928-934. |
22 | Chen L, Lv Z, Shen X, et al. Adaptive attitude control for a coaxial tilt-rotor UAV via immersion and invariance methodology[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(9): 1710-1713. |
23 | Amato F, Ariola M, Carbone M, et al. Finite-time Control of Linear Systems: A Survey[M]. Birkhäuser Boston: Springer Verlag, 2006: 195-213. |
24 | Hong Y, Huang J, Xu Y. On an output feedback finite-time stabilization problem[J]. IEEE Transactions on Automatic Control, 2001, 46(2): 305-309. |
25 | Yu S, Yu X, Shirinzadeh B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964. |
26 | Pan H, Sun W. Nonlinear output feedback finite-time control for vehicle active suspension systems[J]. IEEE Transactions on Industrial Informatics, 2018, 15(4): 2073-2082. |
27 | Wang N, Karimi H R, Li H, et al. Accurate trajectory tracking of disturbed surface vehicles: a finite-time control approach[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(3): 1064-1074. |
28 | Lv Z Y, Wu Y, Zhao Q, et al. Design and control of a novel coaxial tilt-rotor UAV[J]. IEEE Transactions on Industrial Electronics, 2021, 69(4): 3810-3821. |
29 | Featherstone R, Orin D. Robot dynamics: equations and algorithms[C]∥IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 2000: 826-834. |
30 | Zuo Z, Han Q L, Ning B. Fixed-time Cooperative Control of Multi-agent Systems[M]. Cham, Switzerland: Springer International Publishing, 2019. |
31 | Cole K, Wickenheiser A M. Reactive trajectory generation for multiple vehicles in unknown environments with wind disturbances[J]. IEEE Transactions on Robotics, 2018, 34(5): 1333-1348. |
32 | Million E. The hadamard product[J]. Course Notes, 2007, 3(6): 1-7. |
[1] | 于雅静,郭健,王荣浩,秦伟,宋明武,向峥嵘. 基于状态观测器的多四旋翼无人机时变编队控制[J]. 吉林大学学报(工学版), 2023, 53(3): 871-882. |
[2] | 齐国元,李阔,王琨. 基于补偿函数观测器的四旋翼无人机姿态受限控制[J]. 吉林大学学报(工学版), 2023, 53(3): 853-862. |
[3] | 郭洪艳,于文雅,刘俊,戴启坤. 复杂场景智能车辆车道与速度一体化滚动优化决策[J]. 吉林大学学报(工学版), 2023, 53(3): 693-703. |
[4] | 王德军,张凯然,徐鹏,顾添骠,于文雅. 基于车辆执行驱动能力的复杂路况速度规划及控制[J]. 吉林大学学报(工学版), 2023, 53(3): 643-652. |
[5] | 申富媛,李炜,蒋栋年. 四旋翼无人机寿命预测和自主维护方法[J]. 吉林大学学报(工学版), 2023, 53(3): 841-852. |
[6] | 徐卓君,王耀祥,黄兴,彭程. 多无人机地面移动目标搜寻和定位[J]. 吉林大学学报(工学版), 2023, 53(3): 832-840. |
[7] | 何德峰,周丹,罗捷. 跟随式车辆队列高效协同弦稳定预测控制[J]. 吉林大学学报(工学版), 2023, 53(3): 726-734. |
[8] | 王小艺,刘迪一,于家斌,何卓昀,赵峙尧. 复杂风场环境下的多旋翼无人机编队故障检测方法[J]. 吉林大学学报(工学版), 2023, 53(3): 823-831. |
[9] | 齐国元,陈浩. 基于观测器的四旋翼控制-抗扰-避障一体化[J]. 吉林大学学报(工学版), 2023, 53(3): 810-822. |
[10] | 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642. |
[11] | 鲜斌,李杰奇,古训. 基于非线性扰动观测器的无人机地面效应补偿[J]. 吉林大学学报(工学版), 2022, 52(8): 1926-1933. |
[12] | 李昂,杨泓渊,雷小萌,宋凯文,千承辉. 基于等效连杆模型的六足机器人行进姿态闭环控制[J]. 吉林大学学报(工学版), 2022, 52(7): 1696-1708. |
[13] | 朱航,于瀚博,梁佳辉,李宏泽. 基于电场模型的无人机搜寻改进算法及仿真分析[J]. 吉林大学学报(工学版), 2022, 52(12): 3029-3038. |
[14] | 曲优,李文辉. 基于锚框变换的单阶段旋转目标检测方法[J]. 吉林大学学报(工学版), 2022, 52(1): 162-173. |
[15] | 鲜斌,张诗婧,韩晓薇,蔡佳明,王岭. 基于强化学习的无人机吊挂负载系统轨迹规划[J]. 吉林大学学报(工学版), 2021, 51(6): 2259-2267. |
|