吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1308-1314.doi: 10.7964/jdxbgxb201405014

• • 上一篇    下一篇

城市道路人行横道处照明指标的确定

程国柱1, 李德欢1, 吴立新2, 莫宣艳1, 3, 徐慧智4   

  1. 1.哈尔滨工业大学 交通科学与工程学院,哈尔滨 150090;
    2.吉林建筑大学 交通科学与工程学院,长春 130018;
    3.重庆市规划设计研究院,重庆 401147;
    4.东北林业大学 交通学院,哈尔滨150040
  • 收稿日期:2013-03-04 出版日期:2014-09-01 发布日期:2014-09-01
  • 通讯作者: 吴立新(1970),女,教授,博士.研究方向:道路交通安全.E-mail:wulixinjt@126.com
  • 作者简介:程国柱(1977), 男, 副教授, 博士.研究方向:道路交通安全.E-mail:guozhucheng@126.com
  • 基金资助:
    国家自然科学基金项目 (51108137); 吉林省自然科学基金项目(201215176); 吉林省科技发展计划项目(20140204026SF).

Lighting parameter of crosswalk urban road

CHENG Guo-zhu1,LI De-huan1,WU Li-xin2,MO Xuan-yan1,3,XU Hui-zhi4   

  1. 1.School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China;
    2.School of Transportation Science and Engineering,Jilin Jianzhu University,Changchun 130018,China;
    3.Institute of Urban Planning and Design,Chongqing 401147,China;
    4.College of Traffic, Northeast Forestry University, Harbin 150040, China
  • Received:2013-03-04 Online:2014-09-01 Published:2014-09-01

摘要: 为了合理确定城市道路人行横道处的照明指标,保证驾驶人对过街行人的有效视认,进行了驾驶人夜间视认距离试验研究。分析了过街行人数量、状态(静止或运动)及衣服颜色对驾驶人夜间识别距离的影响,以及不同车速条件下驾驶人夜间视认距离随平均照度的变化规律,构建了驾驶人夜间视认距离-平均照度-车速关系模型。基于驾驶人夜间视认距离与反应制动距离间的安全行驶判别条件,提出了城市道路人行横道处平均照度的计算方法,并给出了实际案例。研究结果表明:当单个过街行人静止且衣服颜色较深时,驾驶人夜间对其进行视认最为困难;驾驶人夜间视认距离与平均照度呈正对数相关,与行驶速度呈负线性相关。

关键词: 交通运输工程, 驾驶人, 过街行人, 视认距离, 平均照度

Abstract: In order to determine reasonable lighting parameter of crosswalk of urban road and ensure driver's recognition of crossing pedestrian, experimental research on driver distance recognition at night was conducted. The impacts of the number, the state (static or moving) and the cloth color of crossing pedestrians on the driver recognizing distance were analyzed. The relationship between driver recognizing distance and average luminance at different driving speed was also studied. Then a model was established to relate the driver recognizing distance, the average luminance and the driving speed. A calculation method of the average luminance value of crosswalk of urban road at night was presented based on safe discriminating conditions between driver recognizing distance and response-braking distance. A case study using this method was carried out. Results show that it is more difficult for drivers to recognize crossing pedestrian at night when single pedestrian is static and the cloth color is dark. There exist a positive logarithm relation between driver recognizing distance and average luminance, and a negative linear relation between driver recognizing distance and driving speed.

Key words: engineering of communications and transportations, driver, crossing pedestrian, recognition distance, average luminance

中图分类号: 

  • U491
[1] Lim J H, Tsimhoni O,Liu Y. Investigation of driver performance with night vision and pedestrian detection systems-part I: empirical study on visual clutter and glance behavior[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 670-677.
[2] Fuchs K, Abendroth B, Bruder R. Night vision-reduced driver distraction, improved safety and satisfaction[C]∥Proceedings of the 8th International Conference on Engineering Psychology and Cognitive Ergonomics. Berlin: Springer-Verlag, 2009: 367-375.
[3] Brown T, He Y, Roe C, et al. Is more better?—night vision enhancement system's pedestrian warning modes and older drivers[J]. Annals of Advances in Automotive Medicine, 2010, 54(1): 343-350.
[4] Lim J H, Liu Y, Tsimhoni O. Investigation of driver performance with night-vision and pedestrian-detection systems-part 2: queuing network human performance modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(4): 765-772.
[5] Wood J M, Tyrrell R A, Carberry T P. Limitations in drivers' ability to recognize pedestrians at night[J]. Human Factors, 2005, 47(3): 644-653.
[6] Wood J M, Owens D A. Standard measures of visual acuity do not predict drivers' recognition performance under day or night conditions[J]. Optometry and Vision Science, 2005, 82(8): 698-705.
[7] 赵炜华, 刘浩学, 赵建有,等. 基于BP神经网络的驾驶人昼夜动态空间距离判识规律[J]. 中国公路学报, 2010, 23(2): 92-98.Zhao Wei-hua, Liu Hao-xue, Zhao Jian-you, et al. Law of BP neural network-based space distance cognition of driver in dynamic environment at day and night[J]. China Journal of Highway and Transport, 2010,23(2):92-98.
[8] 赵炜华, 刘浩学, 毕仁忠,等. 驾驶人对夜间红绿障碍物空间距离判识差异[J]. 重庆交通大学学报:自然科学版,2009, 28(6):1079-1082.Zhao Wei-hua, Liu Hao-xue, Bi Ren-zhong, et al. Cognition difference of drivers about space distance of red and green obstacles at night[J]. Journal of Chongqing Jiaotong University (Natural Science Edition),2009, 28(6):1079-1082.
[9] 潘晓东, 林雨, 郭雪斌, 等. 逆光条件下交通标志的可视距离研究[J]. 公路交通科技,2006, 23(5): 118-120.Pan Xiao-dong, Lin Yu, Guo Xue-bin, et al. Research on traffic sign discernible visual range under backlighting condition[J]. Journal of Highway and Transportation Research and Development, 2006,23(5):118-120.
[10] 姜军, 陆建, 李娅. 基于驾驶人视认特性的城市道路指路标志设置[J]. 东南大学学报:自然科学版,2010, 40(5): 1089-1092.Jiang Jun, Lu Jian, Li Ya. Setting of road guide signs driver's recognition characteristics[J]. Journal of Southeast University (Natural Science Edition),2010, 40 (5): 1089-1092.
[11] 徐济宣, 吴纪生. 恶劣环境对驾驶人反应时间的影响研究[J]. 交通标准化, 2009 (23): 103-106.Xu Ji-xuan, Wu Ji-sheng. Harsh environment influence on driver's response time[J]. Transport Standardization,2009 (23): 103-106.
[12] 袁浩, 史桂芳, 黄晓明, 等. 停车视距制动模型[J]. 东南大学学报:自然科学版,2009, 39(4): 859-862.Yuan Hao, Shi Gui-fang, Huang Xiao-ming,et al. Braking model of stopping sight distance[J]. Journal of Southeast University (Natural Science Edition),2009, 39(4): 859-862.
[1] 徐洪峰, 高霜霜, 郑启明, 章琨. 信号控制交叉口的复合动态车道管理方法[J]. 吉林大学学报(工学版), 2018, 48(2): 430-439.
[2] 李显生, 孟凡淞, 郑雪莲, 任园园, 严佳晖. 基于应激响应的驾驶人视觉特性[J]. 吉林大学学报(工学版), 2017, 47(5): 1403-1410.
[3] 李显生, 李明明, 郑雪莲, 任园园. 少量酒精作用下车辆制动性及驾驶人注视特性分析[J]. 吉林大学学报(工学版), 2017, 47(2): 408-413.
[4] 王海玮, 温惠英, 刘敏. 夜间环境驾驶员精神负荷的生理特性评估与实验[J]. 吉林大学学报(工学版), 2017, 47(2): 420-428.
[5] 李显生, 李明明, 任有, 严佳晖, 陈小夏. 城市不同道路线形下的驾驶人注视特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1447-1452.
[6] 姜桂艳, 刘彬, 隋晓艳, 马明芳. 基于IC卡收费系统的公交客流信息实时采集方法[J]. 吉林大学学报(工学版), 2016, 46(4): 1076-1082.
[7] 宗芳, 王占中, 贾洪飞, 焦玉玲, 吴杨. 基于支持向量机的通勤日活动-出行持续时间预测[J]. 吉林大学学报(工学版), 2016, 46(2): 406-411.
[8] 潘义勇, 马健霄, 孙璐. 基于可靠度的动态随机交通网络耗时最优路径[J]. 吉林大学学报(工学版), 2016, 46(2): 412-417.
[9] 李世武, 徐艺, 孙文财, 王琳虹, 郭梦竹, 柴萌. 基于瞳孔直径的撞固定物冲突自反馈识别方法[J]. 吉林大学学报(工学版), 2016, 46(2): 418-425.
[10] 赵淑芝, 梁士栋, 马明辉, 刘华胜, 朱永刚. 信号交叉口实时排队长度估计[J]. 吉林大学学报(工学版), 2016, 46(1): 85-91.
[11] 李鹏辉, 张文会, 胡孟夏, 李一兵, 吴彪. 高速公路驾驶人超车过程中的扫视行为[J]. 吉林大学学报(工学版), 2016, 46(1): 114-119.
[12] 马勇, 石涌泉, 付锐, 郭应时. 驾驶人分心时长对车道偏离影响的实车试验[J]. 吉林大学学报(工学版), 2015, 45(4): 1095-1101.
[13] 刘华胜,赵淑芝,朱永刚,李晓玉. 基于有效路径的轨道交通接运线路设计模型[J]. 吉林大学学报(工学版), 2015, 45(2): 371-378.
[14] 祝进城,肖峰,帅斌,刘晓波. 城市出租车拥挤收费[J]. 吉林大学学报(工学版), 2015, 45(1): 89-96.
[15] 高振海, 吴涛, 赵会. 车辆虚拟跟随避撞中驾驶人制动时刻模型[J]. 吉林大学学报(工学版), 2014, 44(5): 1233-1239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!