›› 2012, Vol. ›› Issue (06): 1558-1562.

• 论文 • 上一篇    下一篇

转移概率部分未知的不确定Markov跳变系统的鲁棒镇定

钟向楠, 王占山, 张化光   

  1. 东北大学 信息科学与工程学院, 沈阳 110004
  • 收稿日期:2011-09-13 出版日期:2012-11-01
  • 通讯作者: 王占山(1971-),男,教授,博士生导师.研究方向:神经网络理论,故障诊断理论.E-mail:zhanshan_wang@163.com E-mail:zhanshan_wang@163.com
  • 基金资助:
    国家自然科学基金项目(61074073,61034005);新世纪优秀人才支持计划项目(NCET-10-0306).

Robust stabilization of a class of uncertain Markov jump linear systems with partly unknown transition probabilities

ZHONG Xiang-nan, WANG Zhan-shan, ZHANG Hua-guang   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110004, China
  • Received:2011-09-13 Online:2012-11-01

摘要: 本文研究的系统的转移概率中存在部分未知元素,通过充分考虑转移概率中元素之间的特性,得到了保证相应系统鲁棒指数可镇定的充分性条件,并以一组线性矩阵不等式给出。另外,本文提出的方法不需要知道转移概率中未知元素的任何信息,使结果具有更广的适用范围。仿真实例验证了文中方法的有效性。

关键词: 自动控制技术, 连续Markov跳变线性系统, 转移概率部分未知, 不确定参数, 鲁棒指数镇定, 线性矩阵不等式

Abstract: The robust stabilization problem of a class of continuous-time uncertain Markov jump linear systems with partial unknown transition probabilities was investigated. In contrast with existing literature, in this study, a new system is propose, in which not all elements of the transition probabilities were assumed to be known. By fully considering the properties of the relationship between the transition probabilities, the sufficient conditions for robust exponential stabilization of the underlying systems were derived via linear matrix inequality formulation. Moreover, the proposed concept of partial unknown transition probabilities does not require any acknowledge of the unknown elements, thus, the results obtained by the system have a wide range of applications. Numerical examples illustrate the feasibility of the proposed system.

Key words: automatic cont rol technology, continuous-time Markov jump linear systems, partly unknown transition probabilities, uncertain parameters, robust exponential stabilization, linear matrix inequality

中图分类号: 

  • TP273
[1] Zhang L, Boukas E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities[J]. Automatica, 2009, 45(2):463-468.
[2] Zhang L X, James L. Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions[J]. IEEE Transactions On Automatic Control, 2010, 55(7):1695-1701.
[3] 高明, 盛立. 连续Markov跳变奇异系统的稳定性分析与镇定[J]. 系统工程与电子技术, 2011, 33(1):157-161. Gao Ming, Sheng Li. Stability analysis and stabilization of continuous-time Markov jump singular systems[J]. Systems Engineering and Electronics, 2011, 33(1):157-161.
[4] He S P, Liu F. Exponential stability for uncertain neutral systems with Markov jumps[J]. Journal of Control Theory Application, 2009, 7(1):35-40.
[5] 刘健辰,张兢,张红强,等. 时变时滞离散广义Markov跳变系统的鲁棒稳定性[J]. 控制与决策, 2011, 26(5):667-672. Liu Jian-chen, Zhang Jing, Zhang Hong-qiang, et al. Robust stability for discrete-time singular Markovian jump systems with time-varying delay[J]. Control and Decision, 2011, 26(5):667-672.
[6] Sathananthan S, Beanea C, Ladde G S,et al. Stabilization of stochastic systems under Markovian switching[J]. Nonlinear Analysis: Hybrid Systems, 2010, 4:804-817.
[7] Ma S, Zhang C, Zhu S. Robust stability for discrete-time uncertain singular Markov jump systems with actuator saturation[J]. IET Control Theory Application, 2011, 5(2):255-262.
[8] Farhadi A, Charalambous C D. Stability and reliable data reconstruction of uncertain dynamic systems over finite capacity channels[J]. Automatica, 2010, 46(5):889-896.
[9] 姚秀明,赵富,王常虹. 一类离散Markov 跳跃系统基于状态观测器的鲁棒H控制[J]. 吉林大学学报:工学版, 2010,40(1):136-142. Yao Xiu-ming, Zhao Fu, Wang Chang-hong. Robust observer-based H∞ control for a class of discrete-time Markovian jump systems[J]. Journal of Jilin University (Engineering and Technology Edition), 2010,40(1):136-142.
[10] Costa O L V, Benites G R A M. Linear minimum mean square filter for discrete-time linear systems with Markov jumps and multiplicative noises[J]. Automatica, 2011, 47(3):466-476.
[11] Cong S, Zhang H T, Zou Y. A new exponential stability condition for delayed systems with Markovian switching[J]. Acta Automatica Sinica, 2010, 36(7):1025-1028.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!