›› 2012, Vol. 42 ›› Issue (04): 1008-1014.

• 论文 • 上一篇    下一篇

转向盘式全方位六足机器人运动分析及控制

王国富, 高峰, 徐国艳   

  1. 北京航空航天大学 交通科学与工程学院, 北京 100191
  • 收稿日期:2011-06-28 出版日期:2012-07-01 发布日期:2012-07-01
  • 基金资助:
    "863"国家高技术研究发展计划项目(2010AA101405).

Kinematic analysis and control of omnidirectional hexapod robot with a steering-wheel

WANG Guo-fu, GAO Feng, XU Guo-yan   

  1. Transportation Science and Technology School, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
  • Received:2011-06-28 Online:2012-07-01 Published:2012-07-01

摘要: 提出了一种腿式机器人与转向盘复合的全方位步行机构,介绍了其独特的运动特点和转向性能;为了实现对其良好的运动控制,建立了该步行机器人转向机构在运动过程中的等效机构模型,采用拉格朗日力学法推导出操作臂的动力学方程;通过对样机模型的运动规划和实验研究,证明了转向盘式全方位机器人具有简单灵活、精确的方向可操控性。

关键词: 自动控制技术, 六足机器人, 全方位运动, 转向盘, 步行车辆, 月球车

Abstract: An omnidirectional walking mechanism which synthesizes legged robot and steering-wheel was proposed, the specific motion features and steering performance were introduced. To achieve a good result of motion control, equivalent manipulator model of the steering mechanism was built, and the dynamics were developed by means of Lagrangian dynamic approach. The motion planning and experiments on the prototype validate that the omnidirectional robot with a steering wheel can be manipulated simply, flexibly and accurately.

Key words: automatic control technology, hexapod robot, omnidirectional motion, steering wheel, walking vehicle, lunar rover

中图分类号: 

  • TP24
[1] Brooks R A. A robot that walks:emergent behaviors from a carefully evolved network[J]. Neural Computation,1989:253-262.
[2] Espenschied S, Quinn R D, Chiel H J.Biologically-based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot[J]. Robotics and Autonomous Systems,1996,18:59-64.
[3] Quinn R D, Nelson G M, Bachmann R J. Parallel complementary strategies for implementing biological principles into mobile robots[J]. The International Journal of Robotics Research,2003,22(3):169-186.
[4] Klaassen R, Spenneberg Linnemann D. Biomimetic walking robot scorpion:control and modeling[J]. Robotics and Autonomous Systems,2002,41:69-76.
[5] Frik M, Guddat M, Losch D C. Terrain adaptive control of the walking machine TARRY II//The European Mechanics Colloquium, Euromech, Munich, 1998:108-115.
[6] Tomohito Takubo, Arai Tatsuo, Inoue Kenji, et al. Development of limb mechanism robot-ASTERISK[J]. Journal of Robotics and Mechatronics, 2006, 18(2):203-214.
[7] Wilcox B, Litwin T, Biesiadecki J. ATHLETE:a cargo handling and manipulation robot for the moon[J]. Journal of Field Robotics,2007,24(5):421 -434.
[8] Wilcox Brain H. ATHLETE:an option for mobile lunar landers//IEEE Aerospace Conference, Big Sky, Montana, USA, 2008:1-8.
[9] 陈学东,孙翊,贾文川. 多足步行机器人运动规划与控制[M]. 武汉:华中科技大学出版社,2006.
[10] Lee B H, Lee I K. The implementation of the gaits and body structure for hexapod robot//IEEE International Symposium on Industrial Electronics, Piscataway, NJ, USA:IEEE, 2001:1959-1964.
[11] Kamikawa K, Arai T,Inoue K, et al. Omni-directional gait of multi-legged rescue robot//IEEE International Conference on Robotics and Automation, Piscataway, NJ, USA:IEEE, 2004:2171-2176.
[12] Yang J M, Kim J H. Fault-tolerant locomotion of the hexapod robot[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 1998, 28(1):109-116.
[13] Erden M S, Leblebicioglu K. Free gait generation with reinforcement learning for a six-legged robot[J]. Robotics and Autonomous Systems, 2008,56(3):199-212.
[14] Preumont A, Alexander P, Ghuys D. Gait analysis and implementation of a six leg walking machine//Fifth International Conference on Advanced Robotics, Piscataway, NJ, USA:IEEE, 1991:941-945.
[15] Fukuda T, Adachi Y, Hoshino H, et al. Posture control of 6-leg walking robot//Proceedings of the International Conference on Robotics and Automation, 1995, Nagoya, Aichi, Japan, 1995:21-27.
[16] Wang Guo-fu, Gao Feng, Cui Ying, et al. Kinematic control of dual-tripod walking robot with a steering-wheel//IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009:2415-2420.
[17] Khatib O. Dynamic control of manipulators in operational space//Sixth IFTOMM Congress on Theory of Machines and Mechanisms, New Delhi, 1983:1123-1131.
[18] 王国富,高峰,杨新红,等.基于超声波的移动机器人多目标探测定位方法[J].北京航空航天大学学报,2011,37(12):1519-1523. Wang Guo-fu, Gao Feng, Yang Xin-hong, et al. Multi-target detecting and positioning approach of mobile robot based on ultrasonic sensors[J]. Journal of Beijing University of Aeronautics and Astronautics,2011,37(12):1519-1523.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!