›› 2012, Vol. 42 ›› Issue (05): 1262-1266.

• 论文 • 上一篇    下一篇

基于元分析的差异表达基因识别

吴佳楠1,2, 周春光1,3, 刘桂霞1,3, 沈薇1, 郑明1, 周柚1,3   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130022;
    2. 长春大学 计算机科学与技术学院, 长春 130022;
    3. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130022
  • 收稿日期:2011-08-23 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 刘桂霞(1963-),女,教授.研究方向:计算智能和生物信息学.E-mail:liugx@jlu.edu.cn E-mail:liugx@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(60873146, 60803052, 60973092, 60903097); 吉林省科技发展青年研究项目(201201139, 20090116, 20101589); 吉林大学研究生创新基金项目(20111062).

RSDM:A method to identify differentially expressed genes based on meta-analysis

WU Jia-nan1,2, ZHOU Chun-guang1,3, LIU Gui-xia1,3, SHEN Wei1, ZHENG Ming1, ZHOU You1,3   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130022, China;
    2. College of Computer Science and Technology, Changchun University, Changchun 130022, China;
    3. Symbolic Computation and Knowledge Engineering Laboratory of the Ministry of Education, Jilin University, Changchun 130022, China
  • Received:2011-08-23 Online:2012-09-01 Published:2012-09-01

摘要: 针对传统差异表达基因识别方法不能处理异质性数据集以及分析结果偏差较大的问题,提出了一个基于元分析及标准差过滤技术的差异表达基因识别算法标准差排序分析(RSDM)。对来自于不同实验平台的数据进行整合分析,过滤掉伪差异表达基因PDEGs,并找出遗失的真正的差异表达基因TDEGs。经实验验证,算法简单有效。

关键词: 计算机应用, 生物信息学, 元分析, 差异表达基因识别, 基因芯片数据, 标准差

Abstract: Traditional methods of Differentially Expressed Genes (DEGs) analysis can not be used to deal with heterogeneous data sets that the analysis results are inconsistent usually. A new method, named Rank Standard Deviation Meta (RSDM) analysis, is proposed in this paper for detecting DEGs. The method is based on the meta-analysis and rank standard deviation filtering technology. The proposed method can detect True Differentially Expressed Genes (TDEGs) and filter Pseudo Differentially Expressed Genes (PDEGs), both TDEGs and PDEGs coming from experimental datasets. The experiment results show that the propose method is of high efficiency.

Key words: computer application, bioinformatics, meta-analysis, identification of differentially expressed genes, microarray data, standard deviation

中图分类号: 

  • TP399
[1] Stiglic Gregor, Mateja Bajgot, Kokol Peter. Gene set enrichment meta-learning analysis: next-generation sequencing versus microarrays[J]. BMC Bioinformatics, 2010, doi:10.1186/1471-2105-11-176.
[2] Ling Zhi-qiang, Wang Yi, Mukaisho Kenichi. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences[J]. Bioinformatics, 2010, 26 (11): 1431-1436.
[3] Tusher V G, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response[J]. Proceedings National Academy Science United States America, 2001, 98(9): 5116-5121.
[4] Irizarry R A, Warren D, Spencer F. Multiple-laboratory comparison of microarray platforms[J]. Nat Methods, 2005, 2(5): 345-349.
[5] Kuo W P, Jenssen T-K, Butte A J. Analysis of matched mRNA measurements from two different microarray technologies[J]. Bioinformatics, 2002, 18(3):405-412.
[6] Choi J K, Yu U, Kim S,et al. Combining multiple microarray studies and modeling interstudy variation[J]. Bioinformatics, 2003, 19(Sup.1): 84-90.
[7] Fangxin Hong, Breitling Rainer. A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments[J]. Bioinformatics, 2008, 24(3): 374-382.
[8] Kim J, Patel K, Jung H, et al. Any express: integrated toolkit for analysis of cross-platform gene expression data using a fast interval matching algorithm[J]. BMC Bioinformatics, 2011.doi:10.1186/1471-2105-12-75.
[9] Mehra R, Varambally S, Ding L, et al. Identification of GAT A3 as a breast cancer prognostic marker by global gene expression meta analysis[J]. Cancer Research, 2005, 65: 11259-11264.
[10] 刘桂霞,田原,郑明,等.基于元分析的差异表达基因识别[J].吉林大学学报:工学版,2010, 40(5): 1308-1312. Liu Gui-xia, Tian Yuan, Zheng Ming, et al. Identification of differentially expressed genes based on meta-analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2010,40(5): 1308-1312.
[11] Carolan B J, Heguy A, Harvey B G, et al. Up-regulation of expression of the ubiquitin carboxyl-terminal hydrolase L1 gene in human airway epithelium of cigarette smokers[J]. Cancer Research,2006.doi:10.1158/0008-5472. CAN-06-2224.
[12] Mohammad H S, Rouhollah H, Morteza P, et al. A new spectrophotometric method for determination of selenium in cosmetic and pharmaceutical preparations after preconcentration with cloud point extraction[J]. International Journal of Analytical Chemistry.doi: 10.1155/2011/729651.
[13] Dáa U, Milada V, Irena D, et al. Bioaccumulation and toxicity of selenium compounds in the green alga scenedesmus quadricauda[J]. BMC Plant Biology, 2009.doi:10.1186/1471-2229-9-58.
[14] Letavayova L, Vlckova V, Brozmanova J. Selenium: From cancer prevention to DNA damage[J]. Toxicology, 2006, 227(1/2):1-14.
[15] Van H D, Takahashi H, Inoue E, et al. Transcriptome analyses give insights into selenium-stress responses and seleniumtolerance mechanisms in Arabidopsis[J]. Physiologia Plantarum, 2008, 132(2):236-253.
[1] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[2] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[3] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[4] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[5] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[6] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[7] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[8] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[9] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[10] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
[13] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[14] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[15] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许秀军, 李震, 王立权, 张同喜. 海流边界下初始铺管作业建模及半物理仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 803 -811 .