›› 2012, Vol. 42 ›› Issue (05): 1267-1272.

• 论文 • 上一篇    下一篇

基于机器视觉的软体纤维丝集束智能计数系统

邢笑雪1,2, 刘富1, 马冬梅3, 翟微微4, 王芳荣1   

  1. 1. 吉林大学 通信工程学院,长春 130022;
    2. 长春大学 电子信息工程学院,长春 130022;
    3. 中国科学院 长春光学精密机械与物理研究所,130022;
    4. 吉林大学 物理学院,长春 130022
  • 收稿日期:2011-12-14 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 王芳荣(1967-),男,副教授,博士.研究方向:光机电一体化控制技术.E-mail:wangfr@jlu.edu.cn E-mail:wangfr@jlu.edu.cn
  • 基金资助:
    吉林省科技厅重点项目(20080317).

Intelligent counting system of soft fibrils collection based on machine vision

XING Xiao-xue1,2, LIU Fu1, MA Dong-mei3, ZHAI Wei-wei4, WANG Fang-rong1   

  1. 1. College of Communications Engineering, Jilin University, Changchun 130022, China;
    2. College of Information Engineering, Changchun University, Changchun 130022,China;
    3. Changchun Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Changchun 130022, China;
    4. College of Physics, Jilin University, Changchun 130022, China
  • Received:2011-12-14 Online:2012-09-01 Published:2012-09-01

摘要: 设计了一种基于机器视觉的可以对软体纤维丝集束实现自动计数的检测系统。系统采用自制半球形LED光源照明,对软体纤维丝集束切片,经显微光学系统放大,再由电荷耦合器件(Charge coupled device, CCD)采集放大图像至计算机,通过图像处理系统计算出集束中软体纤维丝数量,并与标准值比较,自动给出是否合格的判别结果。并提出了一种图像处理方法,该方法首先采用基于区域熵值最大的原则将不同光强照射下获取的源图像进行融合,再对融合后的图像利用自组织特征映射(Self organization feature map, SOFM)神经网络求取分割阈值,然后使用求取的分割阈值作为测度指导源图像实现二值化融合,最后采用基于统计量的边界分离和计数方法实现纤维丝集束的计数。实验证明,该系统检测误差不大于1%,重复测量标准差不超过0.07,实现了对软体纤维丝集束的智能计数。

关键词: 计算机应用, 区域熵值最大, 自组织特征映射, 图像融合, 软体纤维丝集束

Abstract: Based on machine vision, an intelligent counting system on soft fibrils collection was designed. The hemispherical LED source was used in the system, and the fiber slice was manufactured. The fiber slice was imaged by a microscope optical system, recorded by a CCD camera, and transferred by the image grabber into a computer. Then the quantities of the soft fibrils collection were calculated by the image processing system, and whether the numbers were qualified or not could be judged. A novel image processing method was proposed. The original images obtained in different light intensity could be fused based on maximum region entropy. The optimal threshold of the fusion image could be got based on SOFM neural networks. Based on the above threshold, the binary images of the originals could be refused. After that the quantities of the soft fibrils collection could be counted through boundary separation and counting algorithms based on statistical value. The experimental results show that the detection error of the system is less than 1%, the maximum standard deviation is no more than 0.07 and the automatic and intelligent counting function on the soft fibrils collection can be accomplished.

Key words: computer application, maximum region entropy, SOFM, image fusion, soft fibrils collection

中图分类号: 

  • TP391.4
[1] Snezana B Stankovic. Static lateral compression of hemp/filament hybrid yarn knitted fabrics[J]. Fibers and Polymers, 2008,9(2): 187-193.
[2] 李星华,王伟霞.对单丝不足粘胶长丝的排查方法[J].人造纤维,2007, 37 (5) : 34-35. Li Xing-hua, Wang Wei-xia. Method of viscose filament detection[J]. Artificial Fiber, 2007, 37(5): 34 -35.
[3] Alok Nath Roy, Gautam Basu. Development of newer products with spun wrapped Jute yarns[J]. Indian Journal of Natural Products and Resources. 2010, 1 (1) : 11-16.
[4] Nansen Christian, Herrman Timothy, Swanson Rand. Machine vision detection of bonemeal in animal feed samples[J]. Applied Spectroscopy, 2010, 64(6): 637-643.
[5] Sergio Cubero, Nuria Aleixos, Enrique Moltó. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables[J]. Food Bioprocess Technol, 2011, 4: 487-504.
[6] 于杰,肖国强,代毅.粘连蚕卵计数方法的研究[J].计算机工程与应用, 2011, 47(8): 179-182. Yu Jie, Xiao Guo-qiang, Dai Yi. Study on counting algorithm for overlapping silkworm ovum image[J]. Computer Engineering and Applications, 2011, 47 (8): 179-182.
[7] 孟芳兵. 一种基于最大区域熵值的图像融合方法[J]. 武汉理工大学学报:信息与管理工程版,2009,31(1):19-21. Meng Fang-bing. An image fusion technique based on the maximum region entropy[J]. Joural of Wuhan University of Technology(Information &Management Engineering), 2009, 31(1):19-21.
[8] Zhang Jia-quan, Feng Yi, Lin Xiao-long, et al.Segmentation of viscose filament fracture surface image based on SOFM network fusion//The 2nd International Conference on Information Engineering and Computer Science, 2010: 1778-1780.
[9] 张彬,郑永果,马芳,等.医学图像融合算法的应用与研究[J]. 重庆医科大学学报, 2011, 36(2):188-191. Zhang Bin, Zheng Yong-guo, Ma Fang, et al. Research and application of medical image fusion algorithm[J]. Journal of Chongqing Medical University, 2011,36(2):188-191.
[10] 张二虎,梁鹏飞. 基于SOFM的灰度图像彩色化算法[J].计算机工程, 2011,37(4):227-229. Zhang Er-hu, Liang Peng-fei. Colorization algorithm for grayscale images based on SOFM[J]. Computer Engineering, 2011,37(4):227-229.
[11] 邵建斌,陈刚.基于分水岭算法的气泡图像分割[J].西安理工大学学报,2011,27(2):185-189. Shao Jian-bin, Chen Gang. Image segmentation of bubble based on watershed algorithm[J]. Journal of Xi'an University of Technology,2011,27(2):185-189.
[12] 武媛媛,岳晓奎.基于分水岭算法的空间目标图像分割方法[J].计算机仿真,2011,28(2):300-303. Wu Yuan-yuan,Yue Xiao-kui. Image segmentation for space target based on watershed algorithm[J]. Computer Simulation, 2011, 28(2): 300-303.
[13] 梁旭东,武妍. 基于邻域特征与聚类的图像分割方法[J].计算机工程, 2011,37(2):201-203. Liang Xu-dong, Wu Yan. Image segmentation method based on neighborhood feature and clustering[J]. Computer Engineering, 2011, 37 (2) : 201 -203.
[14] 张健,宋刚.基于分裂式K均值聚类的图像分割方法[J].计算机应用,2011,31(2):372-374. Zhang Jian, Song Gang. Image segmentation by fissive K-mean clustering method[J]. Journal of Computer Applications, 2011, 31 (2) : 372-374.
[15] Swagatam Das, Sudeshna Sil. Kernel-induced fuzzy clustering of image pixels with an improved differential evolution algorithm[J]. Information Sciences, 2010, 180(8): 1237-1256.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[13] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[14] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[15] 曹洁, 苏哲, 李晓旭. 基于Corr-LDA模型的图像标注方法[J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!