吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1155-1161.doi: 10.13229/j.cnki.jdxbgxb201504019
刘国君,赵天,王聪慧,杨志刚,杨旭豪,李思明
摘要: 为提高微尺度下不同反应物的混合效率,针对Y型脉动微混合器结构与工作参数对其混合性能的影响展开优化研究。采用仿真分析对微混合器流道截面尺寸、入口夹角、入口流量及脉动频率进行了优化分析,优选出最佳结构和工作参数,并以此制作试验用系统样机;利用化学反应探针法,通过检测可控合成后的金纳米粒子大小及分布情况,综合评估其混合性能。试验结果表明:Y型脉动微混合器的截面尺寸、流道夹角在入口流量及工作频率一定的条件下存在一个最优值,入口流量及工作频率是一对相互影响的重要工作参数,一定的流量对应一个最佳混合频率。
中图分类号:
[1] Jeong Gi Seok, Chung Seok, Kim Chang Beom, et al. Applications of micromixing technology[J]. Analyst, 2010, 135(3): 460-473. [2] Hessel Volker, Löwe Holger, Schönfeld Friedhelm. Micromixers-a review on passive and active mixing principles[J].Chemical Engineering Science, 2005, 60(8-9): 2479-2501. [3] Suh Yong Kweon, Kang Sangmo. A review on mixing in microfluidics[J]. Micromachines, 2010,1(3): 82-111. [4] Li Jia-xing, Zhang Meng-ying, Wang Li-mu, et al. Design and fabrication of microfluidic mixer from carbonyl iron-PDMS composite membrane[J]. Microfluid Nanofluid, 2011,10(4): 919-925. [5] Lee Chia Yen, Chang Chin Lung, Wang Yao nan, et al. Microfluidic mixing: a review[J]. International Journal of Molecular Sciences, 2011,12(5): 3263-3287. [6] 王灵秀, 张仁元, 陈观生, 等. T型微混合器混合特性的浓度分布评价法[J]. 分析化学研究简报, 2008,8(9): 1241-1244. Wang Ling-xiu, Zhang Ren-yuan, Chen Guan-sheng, et al. Concentration distribution evaluation technique for T-shaped micromixer[J]. Chinese Joumal of Analytical Chemistry, 2008,8(9): 1241-1244. [7] 夏国栋, 李建, 周明正, 等. Tesla 微混合器结构参数对混合强度的影响[J]. 工程热物理学报, 2011, 32(3):433-436. Xia Guo-dong, Li Jian, Zhou Ming-zheng, et al. The effect of structural parameters on mixing index in tesla-type micromixer[J]. Journal of Engineering Thermophysics, 2011, 32(3):433-436. [8] 毛文彬,徐进良. 脉动流动强化微混合的研究[J]. 高校化学工程学报, 2009,23(3): 397-403. Mao Wen-bin, Xu Jin-liang. Enhancing the micron scale mixing in a micromixer by pulsating flow[J]. Journal of Chemical Engineering of Chinese Universities, 2009,23(3): 397-403. [9] Mao W B, Xu J L. Micromixing enhanced by pulsating flows[J]. International Journal of Heat and Mass Transfer, 2009,52(21-22): 5258-5261. [10] Sugano K, Uchida Y, Ichihashi O, et al. Mixing speed-controlled gold nanoparticle synthesis with pulsed mixing microfludic system[J]. Microfluid Nanofluid, 2010, 9(6): 1165-1174. [11] Shi Xin, Xiang Yang, Wen Li-xiong, et al. CFD analysis of flow patterns and micromixing efficiency in a Y-Type microchannel reactor[J]. Industrial and Engineering Chemistry Research, 2012,51(43): 13944-13952. [12] Ma Yan-bao, Sun Chien Pin, Fields Michael, et al. An unsteady microfluidic T-form mixer perturbed by hydrodynamic pressure[J]. Journal of Micromech Microeng, 2008,18(4):1-14. [13] Hsieh Shou Shing, Lin Jyun Wei, Chen Jyun Hong. Mixing efficiency of Y-type micromixers with different angles[J]. International Journal of Heat and Fluid Flow, 2013,44:130-139. [14] Barath Palanisamy, Brian Paul. Continuous flow synthesis of ceria nanoparticles using static T-mixers[J]. Chemical Engineering Science, 2012, 78: 46-52. [15] 郭春海, 谭俊杰. 一种新型主动微混合器及其流场的数值研究[J]. 计算力学学报, 2012, 29(5): 800-805. Guo Chun-hai,Tan Jun-jie. A new active micro-mixer and research on its numerical flow field[J]. Chinese Journal of computational Mechanics, 2012, 29(5): 800-805. [16] 张平, 胡亮红, 刘永顺. 主辅通道型微混合器的设计与制作[J]. 光学精密工程, 2010,18(4): 872-879. Zhang Ping, Hu Liang-hong, Liu Yong-shun. Design and fabrication of micromixer with main-assist channels[J]. Optics and Precision Engineering, 2010,18(4): 872-879. [17] 彭菊村, 卢强华, 吴波英. 金纳米颗粒水相合成工艺研究[J]. 稀有金属材料与工程, 2006, 35(6): 954-958. Peng Ju-cun, Lu Qiang-hua, Wu Bo-ying. Study on stirring time and in aqueous synthesis for au nanoparticles[J]. Rare Metal Materials and Engineering, 2006, 35(6): 954-958. [18] Weng Chen Hsun, Huang Chih Chia, Yeh Chen Sheng. Synthesis of hexagonal gold nanoparticles using a microfluidic reaction system[J]. Journal of Micromech Microeng, 2008,18(3):1-8. |
[1] | 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499. |
[2] | 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507. |
[3] | 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071. |
[4] | 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084. |
[5] | 王佳怡, 刘昕晖, 王昕, 齐海波, 孙晓宇, 王丽. 数字二次元件变量冲击机理及其抑制[J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781. |
[6] | 闻德生, 王京, 高俊峰, 周聪. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1094-1101. |
[7] | 刘国君, 张炎炎, 杨旭豪, 李新波, 刘建芳, 杨志刚. 声表面波技术在金纳米粒子可控制备中的应用[J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108. |
[8] | 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826. |
[9] | 李慎龙, 刘树成, 邢庆坤, 张静, 赖宇阳. 基于LBM-LES模拟的离合器摩擦副流致运动效应[J]. 吉林大学学报(工学版), 2017, 47(2): 490-497. |
[10] | 张敏, 李松晶, 蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报(工学版), 2017, 47(2): 498-503. |
[11] | 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509. |
[12] | 顾守东, 刘建芳, 杨志刚, 焦晓阳, 江海, 路崧. 压电式锡膏喷射阀特性[J]. 吉林大学学报(工学版), 2017, 47(2): 510-517. |
[13] | 张健, 姜继海, 李艳杰. 锥型节流阀流量特性[J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905. |
[14] | 吴维, 狄崇峰, 胡纪滨, 苑士华. 基于液压变压器的自适应换向驱动系统[J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911. |
[15] | 杨华勇, 王双, 张斌, 洪昊岑, 钟麒. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505. |
|