吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 1881-1891.doi: 10.13229/j.cnki.jdxbgxb201606017

• 论文 • 上一篇    下一篇

基于热氛围燃烧器的湍流射流起升火焰基础研究进展

吴志军, 赵文伯, 张青   

  1. 同济大学 汽车学院,上海 201804
  • 收稿日期:2016-07-01 出版日期:2016-11-20 发布日期:2016-11-20
  • 作者简介:吴志军(1972-),男,教授,博士生导师.研究方向:内燃机燃烧与排放控制.E-mail:zjwu@tongji.edu.cn
  • 基金资助:

    国家自然科学基金重大项目(91441125)

Progress in basic research of turbulent spray lifted flame based on controllable active thermo-atmosphere combustor

WU Zhi-jun, ZHAO Wen-bo, ZHANG Qing   

  1. School of Automotive Studies, Tongji University, Shanghai 201804, China
  • Received:2016-07-01 Online:2016-11-20 Published:2016-11-20

摘要:

描述了热氛围燃烧器的结构、特点和主要功能。介绍了国内、外关于湍流射流起升火焰特性方面研究的主要内容和成果。将基于该燃烧器的相关领域的研究按照燃料特性进行了分类总结。分析了可控活化热氛围燃烧器在湍流起升火焰特性研究上的优势和特点,并提出了该燃烧器进一步的发展方向。

关键词: 工程热物理, 可控活化热氛围, 湍流起升火焰, 燃烧稳定

Abstract:

The structure, main features and functions of active thermo-atmosphere combustor are described. Then, the main topics and achievements in the research of turbulent spray auto-ignition and flame stabilization are reviewed. The studies on this type of active thermo-atmosphere combustors are classified according to the fuel characteristics. The research advantages and features of controllable active thermo-atmosphere combustor are analyzed. The directions for future research of such combustor are predicted.

Key words: engineering thermo physics, controllable active thermo-atmosphere, turbulent jet flame, combustion stability

中图分类号: 

  • TK121
[1] Schlichting H, Gersten K. Boundary Layer Theory[DB/OL]. [2016-06-20].https://www.doc88.com/p-9109559075001.html.
[2] Hinze J O. Turbulence[M]. New York: McGraw-Hill,1975.
[3] Vanquickenborne L, van Tiggelen A. The stabilization mechanism of lifted diffusion flames[J]. Combustion and Flame,1966,10(1):59-69.
[4] Schefer R W, Goix P J. Mechanism of flame stabilization in turbulent, lifted-jet flames[J]. Combustion and Flame,1998,112(4):559-574.
[5] Mastorakos E, Baritaud T A, Poinsot T J. Numerical simulations of autoignition in turbulent mixing flows[J]. Combustion and Flame,1997,109(1):198-223.
[6] Mastorakos E, Bilger R W. Second-order conditional moment closure for the autoignition of turbulent flows[J]. Physics of Fluids,1998,10(10):1246-1248.
[7] Bilger R W. Turbulent jet diffusion flames[J]. Energy Combus Sci,1976,1(2):87-109.
[8] Brown C D, Watson K A, Lyons K M. Studies on lifted jet flames in coflow: the stabilization mechanism in the near-and far-fields[J]. Flow, Turbulence and Combustion,1999,62(3):249-273.
[9] 吴志军,邓俊,冯威,等. 可控活化热氛围下喷射燃料自燃的研究方法[J]. 吉林大学学报:工学版,2006,36(1):36-41.
Wu Zhi-jun,Deng Jun,Feng Wei,et al. Research method for autoignition of fuel jet in controllable active thermo-atmosphere[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(1):36-41.
[10] Cabra R, Myhrvold T, Chen J Y, et al. Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H 2 /N 2 jet flame in a vitiated coflow[J]. Proceedings of the Combustion Institute,2002,29(2):1881-1888.
[11] Wu Z, Starner S H, Bilger R W. Lift-off heights of turbulent H2/N2 jet flames in a vitiated co-flow[C]∥Proceedings of the 2003 Australian Symposium on Combustion and the 8th Australian Flame Days,Australia,2003.
[12] Barlow R S, Pope S B, Masri A R, et al. Sixth international workshop on measurement computation of turbulent non-premixed flames[C]∥Proceedings of Sixth International Workshop on Measurement and Computation of Turbulent Non premixed Flames,Sapporo, Japan, 2002.
[13] 邓俊,吴志军,李理光,等. 可控活化热氛围燃烧试验系统的研发[J]. 吉林大学学报:工学版,2007,37(2):307-312.
Deng Jun,Wu Zhi-jun,Li Li-guang, et al. Development of experimental system of novel controllable active thermo-atmosphere combustor[J]. Journal of Jilin University(Engineering and Technology Edition),2007,37(2):307-312.
[14] 吴志军,邓俊,李理光. 可控活化热氛围燃烧器非标协流特性的试验研究[J]. 科学通报,2005,50(7):721-724.
Wu Zhi-jun, Deng Jun, Li Li-guang. Study on characteristics of controllable active thermo-atmosphere of a vitiated coflow combustor[J]. Chinese Science Bulletin,2005,50(7):721-724.
[15] Wang H, You X, Joshi A V, et al. USC Mech Version II. High-temperature combustion reaction model of H 2 /CO/C 1 -C 4 Compounds[DB/OL]. [2016-06-25].https://ignis.usc.edu/USC_Mech_II.htm.
[16] Smith G P, Golden D M, Frenklach M, et al. GRI-Mech 3.0[DB/OL]. [2016-06-25]. http://combustion.berkeley.edu/gri-mech/.
[17] Tacke M M, Geyer D, Hassel E P, et al. A detailed investigation of the stabilization point of lifted turbulent diffusion flames[J]. Symposium on Combustion,1998,27(1):1157-1165.
[18] Brown C D, Watson K A, Lyons K M. Studies on lifted jet flames in coflow: the stabilization mechanism in the near-and far-fields[J]. Flow, Turbulence and Combustion,1999,62(3):249-273.
[19] Cabra R, Hamano Y, Chen J Y, et al. Enaemble diffraction measurements of spray combustion in a novel vitiated coflow turbulent jet flame burner[R]. Golden:Spring Meeting of theWestern States Section of the Combustion Institute, 2000.
[20] Smith L L, Dibble R W, Talbot L, et al. Laser Raman scattering measurements of differential molecular diffusion in turbulent nonpremixed jet flames of H 2 /CO 2 fuel[J]. Combustion and Flame,1995,100(1/2):153-160.
[21] Mastorakos E, Markides C, Wright Y M. Hydrogen autoignition in a turbulent duct flow: experiments and modelling[C]∥The 12th International Conference on Fluid Flow Technologies,Budapest,2003:56-62.
[22] Cabra R, Chen J Y, Dibble R W, et al. Lifted methane-air jet flames in a vitiated coflow[J]. Combustion & Flame,2005,143(4):491-506.
[23] Cao R R, Pope S B, Masri A R. Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations[J]. Combustion and Flame,2005,142(4):438-453.
[24] Gordon R L, Starner S H, Masri A R, et al. Further characterisation of lifted hydrogen and methane flames issuing into a vitiated coflow[C]∥Proceedings of the 5th Asia-Pacific Conference on Combustion, Adelaide, Australia,2005:333-336.
[25] Wu Z, Masri A R, Bilger R W. An experimental investigation of the turbulence structure of a lifted H 2 /N 2 jet flame in a vitiated co-flow[J]. Flow, Turbulence and Combustion,2006,76(1):61-81.
[26] Patwardhan S S, De S, Lakshmisha K N, et al. CMC simulations of lifted turbulent jet flame in a vitiated coflow[J]. Proceedings of the Combustion Institute,2009,32(2): 1705-1712.
[27] Klimenko A Y. Multicomponent diffusion of various admixtures in turbulent flow[J]. Fluid Dynamics,1990,25(3):327-334.
[28] Bilger R W. Conditional moment closure for turbulent reacting flow[J]. Physics of Fluids A,1993,5(2):436-444.
[29] Navarro-Martinez S, Rigopoulos S. Large eddy simulation of a turbulent lifted flame using conditional moment closure and rate-controlled constrained equilibrium[J]. Flow, Turbulence and Combustion,2011,87(2/3):407-423.
[30] Stankovi c ' I, Merci B. Analysis of auto-ignition of heated hydrogen-air mixtures with different detailed reaction mechanisms[J]. Combustion Theory and Modelling,2011,15(3): 409-436.
[31] Johannessen B, North A, Dibble R, et al. Experimental studies of autoignition events in unsteady hydrogen-air flames[J]. Combustion & Flame,2015,162(9):3210-3219.
[32] Cabra R, Dibble R W, Chen J Y. Characterization of liquid fuel evaporation of a lifted methanol spray flame in a vitiated coflow burner[DB/OL].[2016-06-26]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030014738.pdf.
[33] 邓俊,吴志军,黄成杰,等. 活化热氛围下柴油喷雾多点自燃特性及影响因素的实验研究[J]. 科学通报,2006,51(22):2699-2704.
Deng Jun, Wu Zhi-jun, Huang Cheng-jie, et al. Experimental study on multi-point autoignition characteristics and influence factors of diesel spray in a controllable active thermo-atmosphere[J]. Chinese Science Bulletin,2006,51(22):2699-2704.
[34] 张旭升, 李理光, 邓俊,等. 生物柴油喷雾特性的试验研究[J]. 内燃机学报, 2007,25(2):172-176.
Zhang Xu-sheng,Li Li-guang,Deng Jun,et al.An experimental study of bio-diesel spray characteristics[J]. Transactions of Csice,2007,25(2):172-176.
[35] 包堂堂,邓俊,吴志军. 临界温度区域内柴油喷雾燃烧特性模拟[J]. 同济大学学报:自然科学版,2013,41(8):1255-1262.
Bao Tang-tang,Deng Jun, Wu Zhi-jun. Numerical study on combustion characteristics of diesel spray crossing critical temperature range[J]. Journal of Tongji University(Natural Science),2013,41(8):1255-1262.
[36] 龚慧峰,胡宗杰,张青,等. 可控热氛围下正庚烷液滴流燃烧火焰特性研究[J]. 工程热物理学报, 2016,37(5):1134-1140.
Gong Hui-Feng, Hu Zong-Jie, Zhang Qing,et al. Flame characteristics of n -Heptane droplet streams in a controllable active thermo-atmosphere[J]. Journal of Engineering Thermophysics,2016,37(5):1134-1140.
[37] 贺孝愚,童孙禹,宛昕,等. 活化热氛围下润滑油自燃特性研究[J]. 润滑油,2016,31(1):59-64.
He Xiao-yu,Tong Sun-yu, Wan Xin, et al. Research on the auto-ignition characteristics of lubricant in controllable active thermo-atmosphere[J]. Lubricating Oil,2016,31(1):59-64.
[38] 张旭升,李理光,吴志军,等. 可控活化热氛围中不同混合比生物柴油的燃烧特性[J]. 燃烧科学与技术,2008,14(2):127-131.
Zhang Xu-sheng,Li Li-guang, Wu Zhi-jun, et al. Characteristics of the biodiesel combustion in a controllable active thermo-atmosphere[J]. Journal of Combustion Science and Technology,2008,14(2):127-131.
[39] Wu Zhi-jun, Bao Tang-tang, Zhang Qing, et al. Experimental study on spray combustion characteristics of gasoline-diesel blended fuel in a controllable active thermo-atmosphere[J]. Fuel, 2014,135:374-379.
[40] Wu Zhi-jun, Bao Tang-tang, Zhang Qing, et al. Simulation study on spray combustion mechanism of diesel-gasoline blend fuels[J]. Fuel,2015,143:301-307.
[41] 包堂堂,胡宗杰,胡俊超,等. 基于超声雾化的柴油/汽油混合燃料液滴群燃烧特性[J]. 吉林大学学报:工学版,2013,43(4):903-908.
Bao Tang-tang, Hu Zong-jie, Hu Jun-chao, et al. Combustion characteristics of diesel-gasoline blend fuel based on ultrasonic atomization technology[J]. Journal of Jilin University(Engineering and Technology Edition),2013,43(4):903-908.
[42] 张青,吴志军,赵文伯,等. 可控热氛围下丙烷柴油混合燃料喷雾特性试验研究[J]. 工程热物理学报,2015,33(9):2050-2054.
Zhang Qing, Wu Zhi-jun,Zhao Wen-bo, et al. Experimental study on spray characteristics of diesel-propane blend fuel in a controllable active thermo-atmosphere[J]. Journal of Engineering Thermophysics,2015,33(9):2050-2054.
[43] 包堂堂,张青,严术斌,等. 可控热氛围下柴油/丙烷混合燃料低压喷雾及自燃特性试验[J]. 内燃机学报,2014,32(4):309-315.
Bao Tang-tang, Zhang Qing, Yan Shu-bin, et al. Experiment on low pressure spray and auto-ignition characteristics of diesel-propane blends in controllable active thermo-atmosphere[J]. Transactions of Csice,2014,32(4):309-315.
[1] 孟育博, 李丕茂, 张幽彤, 王志明. 共轨系统压力波动和多次喷射油量偏差的抑制[J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[2] 孙正, 黄钰期, 俞小莉. 径向滑动轴承润滑油膜流动-传热过程仿真[J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[3] 孟育博, 张幽彤, 王志明, 张晓晨, 樊利康, 李涛. 压电喷油器压电执行器热-电-机械耦合迟滞特性[J]. 吉林大学学报(工学版), 2018, 48(2): 480-485.
[4] 崔金生, 侯绪研, 邓宗全, 潘万竞, 姜生元. 真空颗粒系统有效导热系数测量试验台研制及试验[J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[5] 齐子姝, 高青, 刘研, 白莉. 地能利用热泵系统模型计算及其多年运行工况分析[J]. 吉林大学学报(工学版), 2015, 45(6): 1811-1816.
[6] 齐子姝, 高青, 刘研, 于鸣. 联供模式地下换热器温变及其热泵效能分析[J]. 吉林大学学报(工学版), 2012, 42(02): 339-343.
[7] 高印寒,陈王锋,程鹏,李振雷,池俊成,李强 . 旋风分离器两相三维流场仿真
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 85-0089.
[8] 谷艳华,郭英男,刘发发,彭亚平,梁晓明 . 火花点燃对乙醇HCCI燃烧稳定性的影响[J]. 吉林大学学报(工学版), 2008, 38(04): 782-785.
[9] 李忠建,郑茂余,王芳 . 有限热容不可逆四热源吸收式制冷机的优化
[J]. 吉林大学学报(工学版), 2008, 38(02): 283-0286.
[10] 邓俊,吴志军,李理光,黄成杰,冯威 . 可控活化热氛围燃烧试验系统的研发
[J]. 吉林大学学报(工学版), 2007, 37(02): 307-0312.
[11] 张保勇,吴强,王永敬 . 表面活性剂对气体水合物生成诱导时间的作用机理[J]. 吉林大学学报(工学版), 2007, 37(01): 239-244.
[12] 吴志军, 邓俊,冯威,李理光. 可控活化热氛围下喷射燃料自燃的研究方法[J]. 吉林大学学报(工学版), 2006, 36(01): 36-0041.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘松山, 王庆年, 王伟华, 林鑫. 惯性质量对馈能悬架阻尼特性和幅频特性的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] 初亮, 王彦波, 祁富伟, 张永生. 用于制动压力精确控制的进液阀控制方法[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] 李静, 王子涵, 余春贤, 韩佐悦, 孙博华. 硬件在环试验台整车状态跟随控制系统设计[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] 朱剑峰, 林逸, 陈潇凯, 施国标. 汽车变速箱壳体结构拓扑优化设计[J]. 吉林大学学报(工学版), 2013, 43(03): 584 -589 .
[5] 胡兴军, 李腾飞, 王靖宇, 杨博, 郭鹏, 廖磊. 尾板对重型载货汽车尾部流场的影响[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[6] 王同建, 陈晋市, 赵锋, 赵庆波, 刘昕晖, 袁华山. 全液压转向系统机液联合仿真及试验[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[7] 张春勤, 姜桂艳, 吴正言. 机动车出行者出发时间选择的影响因素[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[8] 马万经, 谢涵洲. 双停车线进口道主、预信号配时协调控制模型[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[9] 于德新, 仝倩, 杨兆升, 高鹏. 重大灾害条件下应急交通疏散时间预测模型[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[10] 肖赟, 雷俊卿, 张坤, 李忠三. 多级变幅疲劳荷载下预应力混凝土梁刚度退化[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .