吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1225-1230.doi: 10.13229/j.cnki.jdxbgxb201704030

• 论文 • 上一篇    下一篇

无平衡点分数阶混沌系统全状态自适应控制

邵克勇, 陈丰, 王婷婷, 王季驰, 周立朋   

  1. 东北石油大学 电气信息工程学院,黑龙江 大庆 163318
  • 收稿日期:2016-05-28 出版日期:2017-07-20 发布日期:2017-07-20
  • 作者简介:邵克勇(1970-),男,教授,博士.研究方向:鲁棒控制,智能控制.E-mail:1127073951@qq.com
  • 基金资助:
    东北石油大学研究生创新科研项目(YJSCX2015-032NEPU,YTSGX2015-031NEPU).

Full state based adaptive control of fractional order chaotic system without equilibrium point

SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng   

  1. College of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318,China
  • Received:2016-05-28 Online:2017-07-20 Published:2017-07-20

摘要: 针对一类无平衡点的分数阶混沌系统,首先通过分数阶微分变换方法(FDTM)得到它的解序列。然后,研究了系统的Kaplan-Yorke维数和耗散性,基于系统的离散映射通过QR分解得到最大Lyapunov特征指数,通过该特征指数可以判断系统是否保持混沌。最后,给出一种全状态自适应控制方法,使系统的状态变量追踪期望轨迹,并通过数值模拟验证了本文算法的可行性。

关键词: 自动控制技术, 人工智能, 无平衡点的混沌系统, 分数阶微分变换方法, 全状态自适应控制, Lyapunov特征指数

Abstract: For a class of chaotic system without equilibrium point, its solution series is obtained by the Fractional Differential Transformation Method (FDTM). Then, the Kaplan-Yorke dimension and the dissipativity of the system are investigated. The Lyapunov characteristic exponents are calculated based on the discrete map of the system through QR factorization algorithm, and the largest Lyapunov characteristic exponent is applied to judge whether the system keeps chaos or not. Finally, a full state based adaptive controller for the fractional order chaotic system is designed, which allows the states of the system to track the desired constant. The feasibility of the proposed algorithm is verified by numerical simulation.

Key words: automatic control technology, artificial intelligence, chaotic system without equilibrium point, fractional differential transformation method(FDTM), full state based adaptive control, Lyapunov characteristic exponent

中图分类号: 

  • TP273
[1] Meral F, Royston T, Magin R. Fractional calculus in viscoelasticity: an experimental study[J]. Communications in Nonlinear Science and Numerical Simulation, 2010,15(4):939-945.
[2] Magin R L. Fractional calculus models of complex dynamics in biological tissues[J]. Computers & Mathematics with Applications, 2010,59(5):1586-1593.
[3] Drapaca C, Sivaloganathan S. A fractional model of continuum mechanics[J]. Journal of Elasticity, 2012,107(2) :105-123.
[4] Wiggins S. Introduction to Applied Nonlinear Dynamical Systems and Chaos[M]//Marsden J E, Sirovich L, Antman S S. Texts in Applied Mathematics. Berlin: Springer, 2003.
[5] Hoppensteadt F C. Analysis and simulation of chaotic systems[J]. Journal of Applied Mathematics and Mechanics,2002,82(7):472.
[6] Li C, Peng G. Chaos in Chen's system with a fractional order[J]. Chaos, Solitons & Fractals, 2004,22(2):443-450.
[7] Xu Y, Gu R, Zhang H, et al. Chaos in diffusionless lorenz system with a fractional order and its control[J]. International Journal of Bifurcation and Chaos, 2012,22(4):1250088.
[8] Danca M F, Garrappa R. Suppressing chaos in discontinuous systems of fractional order by active control[J]. Applied Mathematics and Computation, 2015,257: 89-102.
[9] Tacha O I, Volos C K, Stouboulos I N, et al. Analysis, adaptive control and circuit simulation of a novel finance system with dissaving[J]. Archives of Control Sciences, 2016, 26(1): 95-115.
[10] Kuntanapreeda S. Adaptive control of fractional-order unified chaotic systems using a passivity-based control approach[J]. Nonlinear Dynamics, 2016:84(4):2505-2515.
[11] Wang Q, Zhang J, Ding D, et al. Adaptive mittag-leffler stabilization of a class of fractional order uncertain nonlinear systems[J]. Asian Journal of Control, 2016, 18(6):2343-2351.
[12] Arikoglu A, Ozkol I. Solution of fractional differential equations by using differential transform method[J]. Chaos, Solitons & Fractals, 2007,34(5):1473-1481.
[13] Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[J]. Academic Press, 1999, 91(3):427-436.
[14] Odibat Z, Momani S. A generalized differential transform method for linear partial differential equations of fractional order[J]. Applied Mathematics Letters, 2008,21(2):194-199.
[15] Eckmann J P, Kamphorst S O, Ruelle D, et al. Liapunov exponents from time series[J]. Physical Review A, 1986,34(6): 4971-4979.
[16] Takens F. Detecting Strange Attractors in Turbulence[M]//Smale S. Dynamical Systems and Turbulence. Berlin: Springer, 1981: 366-381.
[17] Duarte-Mermoud M A, Aguila-Camacho N, Gallegos J A, et al. Using general quadratic Lyapunov functions to prove lyapunov uniform stability for fractional order systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2015,22 (1): 650-659.
[18] Li Y, Chen Y, Podlubny I. Mittag-leffler stability of fractional order nonlinear dynamic systems[J]. Automatica, 2009,45(8):1965-1969.
[19] Li Y, Chen Y, Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized mittag-leffler stability[J]. Computers & Mathematics with Applications, 2010,59(5):1810-1821.
[20] Caponetto R, Fazzino S. A semi-analytical method for the computation of the lyapunov exponents of fractional-order systems[J]. Communications in Nonlinear Science and Numerical Simulation, 2013,18(1): 22-27.
[21] Frederickson P, Kaplan J L, Yorke E D, et al. The Liapunov dimension of strange attractors[J]. Journal of Differential Equations,1983, 49(2):185-207.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 董飒, 刘大有, 欧阳若川, 朱允刚, 李丽娜. 引入二阶马尔可夫假设的逻辑回归异质性网络分类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1571-1577.
[7] 顾海军, 田雅倩, 崔莹. 基于行为语言的智能交互代理[J]. 吉林大学学报(工学版), 2018, 48(5): 1578-1585.
[8] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[9] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[10] 王旭, 欧阳继红, 陈桂芬. 基于垂直维序列动态时间规整方法的图相似度度量[J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[11] 张浩, 占萌苹, 郭刘香, 李誌, 刘元宁, 张春鹤, 常浩武, 王志强. 基于高通量数据的人体外源性植物miRNA跨界调控建模[J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[12] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[13] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[14] 黄岚, 纪林影, 姚刚, 翟睿峰, 白天. 面向误诊提示的疾病-症状语义网构建[J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[15] 李雄飞, 冯婷婷, 骆实, 张小利. 基于递归神经网络的自动作曲算法[J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!