吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (6): 1861-1867.doi: 10.13229/j.cnki.jdxbgxb201706026

• 论文 • 上一篇    下一篇

火山灰-SBS、胶粉-SBS和SBS改性沥青压缩变形行为及机理

刘耀辉1, 陈乔旭1, 宋雨来1, 沈艳东2   

  1. 1.吉林大学 材料科学与工程学院,长春130022;
    2.吉林交通职业学院 道桥工程学院,长春130012
  • 收稿日期:2016-10-28 出版日期:2017-11-20 发布日期:2017-11-20
  • 通讯作者: 宋雨来(1974-),男,副教授,博士.研究方向:金属腐蚀,堆焊修复.E-mail:songyulai2005@163.com
  • 作者简介:刘耀辉(1955-),男,教授,博士生导师.研究方向:金属基复合材料.E-mail:lyh@jlu.edu.cn
  • 基金资助:
    吉林省交通运输科技计划科研项目(2012-4-1-10)

Compressive behavior and mechanism of volcanic ash-SBS, rubber powder-SBS and SBS modified asphalt

LIU Yao-hui1, CHEN Qiao-xu1, SONG Yu-lai1, SHEN Yan-dong2   

  1. 1.College of Materials Science and Engineering, Jilin University, Changchun 130022 China;
    2.College of Road and Bridge Engineering,Jilin Transportation Vocational College, Changchun 130012 China
  • Received:2016-10-28 Online:2017-11-20 Published:2017-11-20

摘要: 对火山灰-SBS(苯乙烯丁二烯苯乙烯嵌段共聚物)复合改性沥青混合料,橡胶粉-SBS复合改性沥青混合料和SBS改性沥青混合料在不同温度条件下的压缩变形行为进行了系统研究,揭示了上述3种沥青压缩变形的微观机制。分别在40、25、20、0、-20 和-40 ℃,采用压缩试验测试沥青混合料样品在静压力作用下的力学性能。研究结果表明:在20 ℃以上时,添加火山灰和橡胶粉可以明显提高SBS改性沥青的压缩性能,其中添加火山灰样品的压缩强度提升了30%。在0、-20 ℃时,SBS在提高压缩强度中起主导作用,SBS改性沥青混合料样品的压缩强度则优于复合改性样品,但在-40 ℃时,火山灰颗粒改善了沥青胶浆的收缩性能,显著提高了复合改性沥青混合料的压缩性能。

关键词: 复合材料, 路面工程, 改性沥青, 火山灰, 橡胶粉, 苯乙烯丁二烯乙烯嵌段共聚物, 压缩性能, 变形机制

Abstract: Compressive behavior of volcanic ash-Styrene-Butadiene-Styrene (SBS), rubber powder-SBS and SBS modified asphalt mixtures at different temperatures were investigated. Then the deformation mechanism in the compression process of the three kinds of asphalts were revealed. The compressive properties of the asphalt mixture samples were tested at temperatures of 40, 25, 20, 0, -20 and -40 ℃ by static compressive tests. Experiment results show that the compressive properties of the asphalts were significantly promoted above the temperature of 20 ℃ by adding the volcanic ash and the rubber into the SBS modified asphalt mixture, respectively, the compressive strength was increased by 30% by adding volcanic ash. SBS plays a dominant role at the temperatures of 0 ℃ and -20 ℃ in the asphalts, and the compressive strength of SBS modified asphalt mixture is higher than that of the ash-SBS and rubber powder-SBS modified asphalt mixtures. The volcanic ash improves the shrinkage performance of the asphalt mortar when the temperature descends to -40 ℃, and thus the compressive property of the volcanic ash-SBS modified asphalt mixture is better than that of the others.

Key words: compound materials, road project, asphalt, volcanic ash, rubber powder, SBS, compression behavior, deformation mechanism

中图分类号: 

  • U416.217
[1] JEONG K D, LEE S J. Interaction effects of crumb rubber modified asphalt binders[J].Construction and Building Materials, 2010, 24(5):823-833.
[2] Souza R, Himeno K, Kobayashi A. The characterization of asphalt-rubber blinder[J]. Science Amp; Engineering, 2007, 57(12):7624-7626.
[3] Champion L,Gerard J F,Planche J P. Low temperature fracture properties of polymer-modified asphalts relationships with the morphology[J]. J MATER SCI, 2001,36(2):451-460.
[4] Collins P, Masson J F, Polomark G. Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry[J].Energ Fuel, 2006, 20:1266-1268.
[5] 于丽梅,陈志国. 填料型细火山灰改性沥青混合料路用性能研究[J]. 吉林交通科技,2015,04:27-33.
Yu Li-mei, Chen Zhi-guo. Study on the pavement performance of modified asphalt mixture with filler type[J]. Jilin traffic Science and Technology,2015,4:27-33.
[6] 陈志国火山灰沥青胶浆路用性能的研究[D].哈尔滨工业大学,2010.
Chen Zhi-guo Research on performance of volcanic ash asphalt mastic[D].Harbin:Harbin Institute of Technology,2010.
[7] 李正中,宋晓燕,魏连雨,等. 胶粉改性沥青评价指标及试验方法适应性分析[J]. 中外公路,2010,30(6):207-210.
Li Zheng-zhong, Song Xiao-yan, Wei Lian-yu, et al. Rubber powder modified asphalt evaluation index and adaptability analysis[J]. Journal of China & Foreign Highway, 2010, 30(6): 207-210.
[8] Lu X,Isacsson U. Constr Build Mater 2000.14:79-88.
[9] 汪水银,郭朝阳,彭锋. 废胎胶粉沥青的改性机理[J]. 长安大学学报:自然科学版,2010,04:34-38.
Wang Shui-yin, Guo Chao-yang, Peng Feng. Research on modified mechanism of asphalt with crumb tire rubber[J]. Journal of Chang'an University(Natural Science Edition), 2010,04:34-38.
[10] 谭忆秋.沥青与沥青混合料[M].哈尔滨:哈尔滨工业大学出版社,2007:14-16.
[11] 吴中华. 橡胶粉改性沥青及混合料路用性能研究[D].杭州:浙江大学,2013.
Wu Zhi-hua. Research on the Performance of rubber powder modified asphalt and the mixture[D]. Hangzhou:Zhejiang University ,2013.
[12] 王涛,才洪美,张玉贞. SBS改性沥青机理研究[J]. 石油沥青,2008,22(6):10-14.
Wang Tao, Cai Hong-mei,Zhang Yu-zhen. Study on the mechanism of SBS modified asphalt[J]. Petroleum Asphalt, 2008,22(6):10-14.
[13] 杨光,申爱琴,陈志国,等. 季冻区橡胶粉与SBS复合改性沥青混合料性能及改性机理[J]. 长安大学学报:自然科学版,2015,06:6-15,23.
Yang Guang, Shen Ai-qin, Chen Zhi-guo, et al. Pavement performance and modified mechanism of rubber powder and SBS compound modified asphalt mixture in seasonal freezing region[J]. Journal of Chang'an University (Natural Science Edition), 2015,06:6-15,23.
[14] 王抒音,王哲人,王翠红. 提高沥青混合料抗水损害新技术[J]. 石油大学学报:自然科学版,2002,26(6):95-98,109.
Wang Shu-yin, Wang Zhi-ren, Wang Cui-hong. New technology to improve the water resistance of asphalt mixture[J]. Journal of The University of Petroleum,china, 2002,26(6):95-98,109.
[15] 陈梓宁,程培峰. 火山灰与橡胶粉复合改性沥青混合料的研究[J]. 公路交通科技(应用技术版). 2015(11):26-30.
Chen Zi-ning, Cheng Pei-feng. Study on the compound modified asphalt mixture of volcanic ash and rubber powder[J]. Highway transportation technology (Application Technology) 2015(11):26-30.
[16] 刘植昌,凌立成,乔文明,等. 添加硫沥青球不熔化机理的研究[J]. 炭素技术,1998,(2):10-14.
Liu Zhi-chang, Ling Li-cheng, Qiao Wen-ming, et al. Study on the non-melting mechanism of sulfur asphalt[J].Carbon Techniques, 1998,(2):10-14.
[1] 程永春, 毕海鹏, 马桂荣, 宫亚峰, 田振宏, 吕泽华, 徐志枢. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[2] 胡志清, 郑会会, 徐亚男, 张春玲, 党停停. 表面微沟槽对Al/CFRP胶结性能的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 229-235.
[3] 李静, 王哲. 真三轴加载条件下混凝土的力学特性[J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[4] 崔亚楠, 韩吉伟, 冯蕾, 李嘉迪, 王乐. 盐冻循环条件下改性沥青微细观结构[J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[5] 杨悦, 李雪, 徐晓丹. Ti-B-C-N粉末烧结的微观组织及其性能[J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[6] 陈江义, 刘保元. 纤维断裂损伤对复合材料板中导波频散特性的影响[J]. 吉林大学学报(工学版), 2017, 47(1): 180-184.
[7] 关庆丰, 黄尉, 李怀福, 龚晓花, 张从林, 吕鹏. 强流脉冲电子束诱发的Cu-C扩散合金化[J]. 吉林大学学报(工学版), 2016, 46(6): 1967-1973.
[8] 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1577-1582.
[9] 彭爱东, 刘贺男. 基于水包油微乳液法的方形苝纳米颗粒的合成与荧光性能[J]. 吉林大学学报(工学版), 2016, 46(5): 1583-1586.
[10] 刘利萍, 刘勇兵, 姬连峰, 曹占义, 杨晓红. 原位颗粒增强钛基复合材料高温流变行为[J]. 吉林大学学报(工学版), 2016, 46(4): 1197-1201.
[11] 赵刚, 孙壮志, 郭华君, 隋志阳, 李芳, 赵华兴. 基于离子聚合物金属基复合材料线性驱动单元的性能[J]. 吉林大学学报(工学版), 2016, 46(1): 221-227.
[12] 闫光,韩小进,闫楚良,祝连庆. 含口盖复合材料圆柱壳轴压屈曲性能分析[J]. 吉林大学学报(工学版), 2015, 45(1): 187-192.
[13] 闫光, 范舟, 李钟海, 程小全, 刘克格, 左春柽. 复合材料加口盖柱壳的设计与分析[J]. , 2012, (06): 1437-1441.
[14] 刘家安, 于思荣, 朱先勇. Zn-22Al泡沫夹芯复合板的三点弯曲性能[J]. 吉林大学学报(工学版), 2012, 42(02): 344-348.
[15] 刘曙光, 闫敏, 闫长旺, 郭荣跃. 聚乙烯醇纤维强化水泥基复合材料的抗盐冻性能[J]. 吉林大学学报(工学版), 2012, 42(01): 63-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!