吉林大学学报(工学版) ›› 2020, Vol. 50 ›› Issue (2): 606-612.doi: 10.13229/j.cnki.jdxbgxb20181157

• 交通运输工程·土木工程 • 上一篇    

高性能树脂混凝土加固混凝土偏压柱承载力理论分析

蒲黔辉1(),刘静文1,赵刚云1,严猛1,2,李晓斌1   

  1. 1.西南交通大学 土木工程学院,成都 610031
    2.四川交大工程检测咨询有限公司,成都 610031
  • 收稿日期:2018-11-21 出版日期:2020-03-01 发布日期:2020-03-08
  • 作者简介:蒲黔辉(1965-),男,教授,博士.研究方向:既有桥梁结构加固与评估.E-mail:qhpu@vip.163.com
  • 基金资助:
    国家自然科学基金项目(51508474)

Theoretical analysis of bearing capacity of concrete eccentric compressive column reinforced by HTRCS

Qian-hui PU1(),Jing-wen LIU1,Gang-yun ZHAO1,Meng YAN1,2,Xiao-bin LI1   

  1. 1.School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.Sichuan Jiaoda Inspection and Consulting Engineering Company Limited,Chengdu 610031,China
  • Received:2018-11-21 Online:2020-03-01 Published:2020-03-08

摘要:

对高性能树脂混凝土钢丝网薄层(HTRCS)加固RC偏压柱试验中试件的破坏机理、加固试件的承载力进行了理论分析,建立了裂缝平均间距与钢丝网周长的关系式,可对钢丝网层数与平均裂缝间距进行定量分析。利用半波曲线较好地拟合了不同钢丝网层数下试件横向挠度曲线方程。分析验证了加固试件对于不同荷载等级在变形过程中均满足平截面假定。基于条带法运用MATLAB程序对被加固结构的承载力进行理论值计算,与试验值比较误差在5%以内,因此用条带法进行承载力计算是合理可行的。

关键词: 桥梁工程, 树脂混凝土钢丝网薄层, 钢筋混凝土偏压柱, 加固机理, 理论分析

Abstract:

In this paper, based on the experiment conducted previously, failure mechanism and bearing capacity of strengthened specimens were analyzed theoretically. The relationship between the average crack spacing and the circumference of steel wire mesh was established, which can be used for quantitative analysis of the layers of steel wire mesh and the average crack spacing; The equation of transverse deflection curve of specimens with different layers of wire mesh was well fitted by half-wave curve; It was analyzed and verified that the reinforced specimens meet the plane section assumption during the deformation process for different load levels; Based on the strip method, the MATLAB program was used to calculate the bearing capacity of the HTRCS-reinforced RC eccentric column. The error was less than 5% compared with the experimental value. Therefore, it is reasonable and feasible to calculate the bearing capacity by the strip method.

Key words: bridge engineering, HTRCS, reinforced concrete eccentric column, reinforcement mechanism, theoretical analysis

中图分类号: 

  • U445.6

图1

RC柱体的设计(mm)"

图2

加载装置"

图3

应变测点布置图"

图4

试件S-T破坏形态"

图5

加固试件受力分析"

图6

加固试件横向变形与拟合曲线对比"

图7

加固试件平截面假定的验证"

图8

极限承载力时的应力、应变分布"

图9

承载力求解步骤"

表1

承载力理论值和试验值对比 (t)"

试件理论值(1)试验值(2)(1)/(2)
S-T-253.4751.621.036
S-T-356.4453.861.048
1 《中国公路学报》编辑部. 中国桥梁工程学术研究综述: 2014[J]. 中国公路学报, 2014, 27(5): 1-96.
Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2014[J]. China Journal of Highway and Transport, 2014, 27(5): 1-96.
2 马晔, 尼颖升, 徐栋, 等. 基于空间网格模型分析的体外预应力加固[J]. 吉林大学学报: 工学版, 2018, 48(1): 137-147.
Ma Ye, Ni Ying-sheng, Xu Dong, et al. External prestressed strengthening based on analysis of spatial grid model[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 137-147.
3 Yang S H, Cao S Y, Gu R N. New technique for strengthening reinforced concrete beams with composite bonding steel plates[J]. Steel and Composite Structures, 2015, 19(3): 735-757.
4 Hadigheh S A, Kashi S. Effectiveness of vacuum consolidation in bonding fibre reinforced polymer(FRP) composites onto concrete surfaces[J]. Construction and Building Materials, 2018, 187: 854-864.
5 Hadi M N S, Algburi A, Sheikh M N, et al. Axial and flexural behavior of circular reinforced concrete columns strengthened with reactive powder concrete jacket and fiber reinforced polymer wrapping[J]. Construction and Building Materials, 2018, 172: 717-727.
6 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006, 39(3): 24-36.
Ye Lie-ping, Feng Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24-36.
7 Zhu H, Cheng S, Gao D, et al. Flexural behavior of partially fiber-reinforced high-strength concrete beams reinforced with FRP bars[J]. Construction and Building Materials, 2018, 161: 587-597.
8 Deng J, Li J H, Wang Y, et al. Numerical study on notched steel beams strengthened by CFRP plates[J]. Construction and Building Materials, 2018, 163: 622-633.
9 于天来, 刘兴国, 姚爽, 等. 碳纤维筋体外预应力加固钢筋混凝土梁的疲劳性能[J]. 吉林大学学报: 工学版, 2016, 46(6): 1867-1873.
Yu Tian-lai, Liu Xing-guo, Yao Shuang, et al. Fatigue performance of RC beams strengthened with externally prestressed CFRP tendons[J].Journal of Jilin University (Engineering and Technology Editon), 2016, 46(6): 1867-1873.
10 Wang L, Zhang J, Xu J, et al. Anchorage systems of CFRP cables in cable structures―A review[J]. Construction and Building Materials, 2018, 160: 82-99.
11 郝海霞, 张建仁, 高勇, 等. 表层嵌贴CFRP-混凝土界面粘结性能简化分析[J]. 中国公路学报, 2015, 28(4): 52-59.
Hao Hai-xia, Zhang Jian-ren, Gao Yong, et al. Simplified analysis on bond performance of near-surface mounted CFRP-concrete interface[J]. China Journal of Highway and Transport, 2015, 28(4): 52-59.
12 艾珊霞, 尹世平, 徐世烺. 纤维编织网增强混凝土的研究进展及应用[J]. 土木工程学报, 2015, 48(1): 27-40.
Ai Shan-xia, Yin Shi-ping, Xu Shi-lang. A review on the development of research and application of textile reinforced concrete[J]. China Civil Engineering Journal, 2015, 48(1): 27-40.
13 Kimm M, Gerstein N, Schmitz P, et al. On the separation and recycling behaviour of textile reinforced concrete: an experimental study[J]. Materials and Structures, 2018, 51(5): 122.
14 周芬, 徐文, 杜运兴. TRC板增强钢筋混凝土梁的抗弯性能[J]. 中南大学学报: 自然科学版, 2018, 49(1): 183-191.
Zhou Fen, Xu Wen, Du Yun-xing. Flexural behavior of RC beams strengthened with TRC plates[J]. Journal of Central South University (Science and Technology), 2018, 49(1): 183-191.
15 尹世平, 徐世烺. 提高纤维编织网保护层混凝土抗剥离能力的有效方法[J]. 建筑材料学报, 2010, 13(4): 468-473.
Yin Shi-ping, Xu Shi-lang. Effective method to improve anti-flaking capacity of cover concrete to textile[J]. Journal of Building Materials, 2010, 13(4): 468-473.
16 Irshidat M R, Al-Shannaq A. Using textile reinforced mortar modified with carbon nano tubes to improve flexural performance of RC beams[J]. Composite Structures, 2018, 200: 127-134.
17 Raoof S M, Koutas L N, Bournas D A, et al. Textile-reinforced mortar(TRM) versus fibre-reinforced polymers(FRP)in flexural strengthening of RC beams[J]. Construction and Building Materials, 2017, 151: 279-291.
18 Yin S P, Hu X Q, Hua Y T. Study on the compression performance of small eccentric degradation columns strengthened with TRC in a chloride environment[J]. Construction and Building Materials, 2018, 176: 50-59.
19 Ortlepp R, Ortlepp S. Textile reinforced concrete for strengthening of RC columns: a contribution to resource conservation through the preservation of structures[J]. Construction and Building Materials, 2017, 132: 150-160.
20 严猛. 超强高韧性树脂钢丝网混凝土及预应力简支梁桥加固理论研究[D]. 成都: 西南交通大学土木工程学院, 2015.
Yan Meng. High toughness resin concrete with steel wire mesh and the reinforcement theoretical research on prestressed concrete simply supported plate beam bridge[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2015.
21 蒲黔辉, 谢宏伟, 杨丁, 等. 高性能树脂混凝土钢丝网薄层加固RC偏压柱试验研究[J]. 工程科学与技术, 2018, 50(3): 177-184.
Pu Qian-hui, Xie Hong-wei, Yang Ding, et al. Experimental study on RC eccentric compressive column strengthened by HTRCS [J]. Advanced Engineering Sciences, 2018, 50(3): 177-184.
22 袁旭斌, 贺拴海, 宋一凡. 粘贴纤维布加固RC梁的受弯裂缝计算方法[J]. 中国公路学报, 2006, 19(3): 54-58.
Yuan Xu-bin, He Shuan-hai, Song Yi-fan. Calculation method on bending crack in RC beams strengthened with FRP[J]. China Journal of Highway and Transport, 2006, 19(3): 54-58.
23 尹世平. TRC基本力学性能及其增强钢筋混凝土梁受弯性能研究[D].大连: 大连理工大学土木工程学院, 2010.
Yin Shi-ping. Research on TRC mechanical behavior and flexural performance of concrete beam reinforced with TRC[D].Dalian: School of Civil Engineering, Dalian University of Technology, 2010.
24 GB 50010―2010. 混凝土结构设计规范[S].
[1] 张云龙,郭阳阳,王静,梁东. 钢-混凝土组合梁的固有频率及其振型[J]. 吉林大学学报(工学版), 2020, 50(2): 581-588.
[2] 王伯昕,杨海涛,王清,高欣,陈小旭. 基于补充改进集合经验模态分析法⁃多尺度排列熵分析桥梁振动信号优化滤波方法[J]. 吉林大学学报(工学版), 2020, 50(1): 216-226.
[3] 张淼,钱永久,张方,朱守芹. 基于增大截面法的混凝土加固石拱桥空间受力性能试验分析[J]. 吉林大学学报(工学版), 2020, 50(1): 210-215.
[4] 贾毅,赵人达,王永宝,李福海. 多跨长联连续梁桥粘滞阻尼器参数敏感性分析[J]. 吉林大学学报(工学版), 2019, 49(6): 1871-1883.
[5] 钟春玲,梁东,张云龙,王静. 体外预应力加固简支梁自振频率计算[J]. 吉林大学学报(工学版), 2019, 49(6): 1884-1890.
[6] 白伦华,沈锐利,张兴标,王路. 自锚式悬索桥的面内稳定性[J]. 吉林大学学报(工学版), 2019, 49(5): 1500-1508.
[7] 赵金钢,张明,占玉林,谢明志. 基于塑性应变能密度的钢筋混凝土墩柱损伤准则[J]. 吉林大学学报(工学版), 2019, 49(4): 1124-1133.
[8] 万世成,黄侨,关健,郭赵元. 预应力碳纤维板加固钢⁃混凝土组合连续梁负弯矩区试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1114-1123.
[9] 李万恒,申林,王少鹏,赵尚传. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报(工学版), 2019, 49(3): 773-780.
[10] 惠迎新,毛明杰,刘海峰,张尚荣. 跨断层桥梁结构地震响应影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1725-1734.
[11] 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[12] 宫亚峰, 何钰龙, 谭国金, 申杨凡. 三跨独柱连续曲线梁桥抗倾覆稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[13] 魏志刚, 刘寒冰, 时成林, 宫亚峰. 考虑桥面铺装作用的简支梁桥横向分布系数计算[J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[14] 魏志刚, 时成林, 刘寒冰, 张云龙. 车辆作用下钢-混凝土组合简支梁动力特性[J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[15] 张云龙, 刘占莹, 吴春利, 王静. 钢-混凝土组合梁静动力响应[J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!