吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (4): 1317-1330.doi: 10.13229/j.cnki.jdxbgxb20200427

• 交通运输工程·土木工程 • 上一篇    

RC类活性粉末混凝土钢筋粘结-滑移本构模型

程东辉(),范永萱,王彦松   

  1. 东北林业大学 土木工程学院,哈尔滨 150040
  • 收稿日期:2020-09-14 出版日期:2021-07-01 发布日期:2021-07-14
  • 作者简介:程东辉(1971-),男,教授,博士.研究方向:混凝土结构.E-mail:chengdonghui2000@126.com
  • 基金资助:
    国家自然科学基金重大研究计划项目(90915003);哈尔滨市科技创新人才研究专项基金项目(2012RFXXS111);中央高校基本科研业务费创新团队与重大项目培育资金项目(2572016EBC1)

Bond-slip constitutive model of steel bars and reactive powder concrete under standard curing

Dong-hui CHENG(),Yong-xuan FAN,Yan-song WANG   

  1. School of Civil Engineering,Northeast Forestry University,Harbin 150040,China
  • Received:2020-09-14 Online:2021-07-01 Published:2021-07-14

摘要:

通过22组活性粉末混凝土中心拔出试验,分析了混凝土抗压强度、钢纤维体积掺量、钢筋直径和钢筋与RPC粘结长度对变形钢筋与RC类活性粉末混凝土粘结性能的影响,总结了钢筋拔出破坏、混凝土劈裂破坏以及钢筋拔出与混凝土劈裂破坏同时发生等3种破坏模式的发生条件,结合试验数据拟合得到RC类养护模式下各粘结锚固特征值计算公式,建立了RC类活性粉末混凝土钢筋平均粘结应力-滑移本构模型,并利用该模型与试验结果进行验证,效果较好;通过钢筋内贴应变片中心拔出试验,分析粘结应力分布规律,拟合得到粘结位置函数。试验结果表明:变形钢筋与活性粉末混凝土粘结强度随混凝土抗压强度的增大而增大;随着钢纤维掺量增加,极限粘接强度τu和残余粘接强度τr呈增大的趋势;随着钢筋直径的增大,初始粘接强度τ0先减小后增大,τu和τr减小;随着钢筋粘结长度的增大,τ0和τr增大,而τu呈减小趋势;随荷载增加,粘结应力峰值从加载端向自由端移动;粘结长度越长,粘结应力分布越不均匀;结合平均粘结应力-滑移本构模型和粘贴位置函数得到的公式能较为充分地反映RC类活性粉末混凝土与变形钢筋的粘结应力-滑移本构模型。

关键词: RC类活性粉末混凝土, 粘结性能, 粘结应力分布, 本构模型

Abstract:

In this paper, 22 groups of center pull-out tests of reactive powder concrete were carried out. The effects of concrete compressive strength, steel fiber volume content, steel bar diameter and bond length between steel bar and reactive powder concrete (RPC) on bond performance between deformed steel bar and RC RPC are analyzed. The occurrence conditions of three failure modes, such as steel bar pull-out failure, concrete splitting failure and simultaneous occurrence of steel bar pull-out and concrete splitting failure, are summarized. Combined with the test data, the calculation formula of the characteristic value of each bond anchorage under RC curing mode is obtained, and the average bond stress-slip constitutive model of RC RPC reinforcement is established., This model is verified by the test results, and the effect is good. Through the pull-out test of the center of the strain gauge attached to the steel bar, the distribution law of bond stress is analyzed, and the bond position function is obtained by fitting. The test results show that the bond strength between deformed steel bars and RPC increases with the increase of compressive strength of concrete. With the increase of steel fiber content, τu and τr tend to increase. With the increase of rebar diameter, τ0 decreases first and then increases, while τu and τr decrease. With the increase of bond length of steel bars, τ0 and τr increase, while τu decreases. With the increase of load, the peak value of bond stress moves from the loading end to the free end. The longer the bond length, the more uneven the bond stress distribution. The formula obtained by combining the average bond stress-slip constitutive model with the paste position function can fully reflect the bond stress-slip constitutive model of RC RPC and deformed steel bars.

Key words: reactive powder concrete, bond properties, bond stress distribution, constitutive mode

中图分类号: 

  • TU378

图1

试件外形尺寸"

表1

试件参数表"

试件组编号水灰比d/mmVf/%la/mm
LB10.1614072
LB20.16140.572
LB30.16141.072
LB40.16141.572
LB50.16142.072
LB60.16142.572
LB70.1618072
LB80.16180.572
LB90.16181.072
LB100.16181.572
LB110.16182.072
LB120.16182.572
LB130.1622072
LB140.16220.572
LB150.16221.072
LB160.16221.572
LB170.16222.072
LB180.16222.572
LB190.19181.572
LB200.22181.572
LB210.16181.545
LB220.16181.599

表2

钢筋应变片个数及间距"

试件编号

钢筋直径

/mm

粘结长度

/mm

应变片间距

/mm

应变片个数
T11845(2.5d9(0.5d6
T21899(5.5d9(0.5d12

图2

钢筋内贴应变片"

表3

活性粉末混凝土配合比 (kg)"

配合比组编号水泥砂子微硅粉减水剂钢纤维
LB1/7/13666124920013973.60
LB2/8/14666124920013973.640
LB3/9/15666124920013973.680
LB4/10/16/21/22、T1/2666124920013973.6120
LB5/11/17666124920013973.6160
LB6/12/18666124920013973.6195
LB19666124920016560.6120
LB20666124920019147.6120

表4

活性粉末混凝土实测立方体抗压强度"

试件组编号fcu/MPa试件组编号fcu/MPa
LB174.93LB1285.67
LB250.13LB1352.40
LB364.73LB1471.40
LB469.33LB1567.77
LB573.40LB1668.43
LB672.13LB1771.87
LB772.13LB1872.07
LB879.03LB1973.73
LB971.77LB2067.00
LB1082.40LB2177.27
LB1171.67LB2264.67

表5

变形钢筋实测强度"

直径/mm屈服强度/MPa极限抗拉强度/MPa
14481632
18461613
22427587

图3

粘结试验装置"

图4

试件破坏形式"

表6

试件破坏特征"

试件

编号

Fu/kN

破坏

形式

试件

编号

Fu/kN

破坏

形式

LB1?186.6PLB12?1122.5P
LB1?280.9PLB12?2126.2P
LB1?367.8PLB12?3118.5P
LB2?160.4PLB13?1-S
LB2?272.3PLB13?2-S
LB2?377.0PLB13?3-S
LB3?175.8PLB14?1-S
LB3?281.3PLB14?2-S
LB3?385.0PLB14?3-S
LB4?183.1PLB15?1127.1P+S
LB4?290.0PLB15?2-S
LB4?388.0PLB15?3-S
LB5?188.7PLB16?1129.3P
LB5?297.2PLB16?2136.4P
LB5?396.5PLB16?3133.5P
LB6?181.7PLB17?1123.1P
LB6?288.0PLB17?2145.6P
LB6?3-TLB17?3146.6P
LB7?1-SLB18?1126.0P
LB7?-2-SLB18?2150.7P
LB7?3-SLB18?3131.9P
LB8?1113.3P+SLB19?1112.2P
LB8?2103.9PLB19?2120.2P
LB8?3113.1P+SLB19?3110.1P
LB9?1113.9P+SLB20?1108.0P+S
LB9?2102.1P+SLB20?2109.4P+S
LB9?3-SLB20?3106.3P
LB10?1121.1PLB21?178.2P
LB10?2119.6P+SLB21?266.8P
LB10?3123.6P+SLB21?376.4P
LB11?1128.6P+SLB22?1143.2P
LB11?2113.9PLB22?2149.0P
LB11?3115.4PLB22?3141.3P

图5

试件实测τ-s曲线"

表7

粘结锚固特征值计算结果"

试件组

编号

fcu

τ0

/MPa

τ0fcu

τs

/MPa

τsfcu

τu

/MPa

τufcu

τr

/MPa

τrfcu

ss

/mm

su

/mm

sr

/mm

LB18.6613.31.5421.32.4624.82.8610.81.250.141.2210.07
LB27.0816.42.3220.52.8922.13.127.11.010.190.749.94
LB38.0518.02.2423.52.9225.53.1711.81.470.120.829.00
LB48.3316.31.9624.22.9127.53.3013.11.580.231.367.77
LB58.5720.72.4226.33.0729.73.4713.71.600.100.9711.47
LB68.4919.32.2825.12.9526.83.16--0.131.09-
LB78.4919.12.2426.03.06----0.12--
LB88.8913.71.5426.63.0027.13.045.50.620.220.439.34
LB98.4713.71.6125.02.9526.53.13--0.16--
LB109.0820.02.2027.43.0129.83.2915.11.660.140.889.01
LB118.4717.42.0526.83.1629.33.4612.31.450.130.849.78
LB129.2614.71.5927.93.0230.13.2510.71.150.160.979.34
LB137.2417.72.4529.44.06----0.14--
LB148.4523.02.7228.33.35----0.07--
LB158.2317.42.1125.73.1225.63.11--0.140.76-
LB168.2720.02.4225.13.0426.83.2311.21.350.100.4610.87
LB178.4821.02.4826.43.1227.83.287.90.940.070.419.73
LB188.4912.71.4924.12.8327.43.229.81.160.170.469.77
LB198.5915.01-25.6-28.13.2713.3-0.180.709.10
LB208.1912.35-24.3-26.53.248.8-0.150.7310.00
LB218.7910.11.1528.33.2229.03.307.20.820.310.4410.39
LB228.0417.92.2324.43.0425.83.2113.41.660.280.787.68

图6

RPC抗压强度对粘结锚固特征值影响"

图7

钢纤维掺量对RPC粘结锚固特征值影响"

图8

钢筋直径对RPC粘结锚固特征值影响"

图9

粘结长度对RPC粘结锚固特征值影响"

表8

粘结锚固强度特征值试验值与计算值对比结果"

试件组编号la/dd/la

Vf

/%

fcu

τ0

/MPa

τ00

/MPa

Δ0

τs

/MPa

τs0

/MPa

Δs

τu

/MPa

τu0

/MPa

Δu

τr

/MPa

τr0

/MPa

Δr
LB15.10.1908.6613.3016.760.7921.2623.330.9124.7823.381.0610.808.041.34
LB20.57.0816.4515.771.0420.4822.160.9222.0824.880.897.149.550.75
LB31.08.0518.0316.381.1023.5222.881.0325.5026.450.9611.8211.151.06
LB41.58.3316.3716.560.9924.2223.091.0527.4928.010.9813.1212.741.03
LB52.08.5720.6816.711.2426.3423.271.1329.7429.571.0113.6914.320.96
LB74.00.2508.4919.0518.211.0526.0225.261.0323.457.66
LB80.58.8913.6918.490.7426.6325.581.0427.0525.011.085.509.17
LB91.08.4713.6718.200.7525.0325.240.9926.5426.551.0010.65
LB101.59.0820.0118.611.0827.3525.731.0629.8428.121.0615.0612.181.24
LB112.08.4717.3618.190.9526.7825.241.0629.3229.650.9912.2613.640.90
LB133.30.3107.2417.7216.721.0629.3925.371.1630.0823.641.276.79
LB140.58.4523.0217.521.3128.2726.391.0725.258.15
LB151.08.2317.3917.381.0025.6726.210.9826.819.48
LB161.58.2720.0217.401.1525.1326.240.9625.5628.380.9011.2110.811.04
LB172.08.4821.0217.541.2026.4226.421.0026.7529.950.897.9312.150.65
LB194.00.251.58.5915.0118.280.8225.6225.331.0128.0628.111.0013.3112.161.10
LB201.58.1912.3518.000.6924.3025.010.9726.5128.090.948.7712.130.72
LB212.50.401.58.7910.0914.200.7128.3027.721.0229.0229.071.007.217.790.93
LB225.50.181.58.0416.3615.501.0624.4422.211.1025.8228.030.9211.0412.660.87
平均值0.991.031.000.97
标准差0.180.060.090.19
变异系数0.180.060.090.20

图10

实测曲线与模型曲线对比"

图11

不同荷载等级时钢筋应力分布"

图12

不同荷载等级时粘结应力分布"

图13

粘结位置函数试验与拟合结果对比"

1 Richard P, Cheyrezy M H.Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7) : 1501-1511.
2 Richard Pierre. Reactive powder concrete: a new ultra high strength cementitious Material[C]∥The 4th International Symposium On Utilization of High Strength High Performance Concrete, Paris,France,1996:1343-1349.
3 吴中伟,廉慧珍. 高性能混凝土[M].北京:中国铁道出版社,1999.
4 柯开展,蔡文尧. 活性粉末混凝士(RPC)在工程结构中的应用与前景[J].福建建材, 2006,24(2): 17-19.
Ke Kai-zhan,Cai Wen-yao. Application and prospect of reactive powder concrete (RPC) in engineering structure[J]. Fujian Building Materials, 2006,24(2): 17-19.
5 杨志慧.不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D]. 北京:北京交通大学土木工程学院,2006.
Yang Zhi-hui. Study on tensile mechanical properties of reactive steel reinforced concrete with different steel fibers[D]. Beijing: School of Civil Engineering,Beijing Jiaotong University,2006.
6 周一桥,杜亚凡. 世界上第一座预制预应力活性粉混凝土结构—舍布鲁克人行桥[J].国外桥梁,2000,27(3):18-23.
Zhou Yi-qiao, Du Ya-fan. The world's first precast prestressed reactive powder concrete structure - Sherbrooke footbridge[J]. Foreign Bridges, 2000,27(3): 18-23.
7 Adeline R, Lachemi M, Blais P. Design and behaviour of the Sherbrooke Footbridge[C]∥Proceedings of International Symposium on High-performance and Reactive Powder Concrete,Sherbrooke,Canada,1998:89-97.
8 贾方方. 钢筋与活性粉末混凝土粘结性能的试验研究[D].北京:北京交通大学土木工程学院,2013.
Jia Fang-fang. Experimental study on the bonding properties of steel bars and reactive powder concrete[D]. Beijing:School of Civil Engineering,Beijing Jiaotong University, 2013.
9 An Ming-zhe,Ji Wen-yu,Zhong Tie-yi,et al. Application of UHPC in railway construction[C]∥International Workshop on Sustainable and Science-Driven Engineering of Cement-based Materials,Beijing,China,2011:141-148.
10 . 活性粉末混凝土[S].
11 李新星. 大流动性活性粉末混凝土与钢筋的粘结滑移本构理论及试验研究[D].湘潭:湘潭大学土木工程与力学学院,2019.
Li Xin-xing. The theory and experimental study of the adhesion slip structure of large liquid active powder concrete and steel bar[D]. Xiangtan:School of Civil Engineering and Mechanics, Xiangtan University, 2019.
12 赵北祥,王晓慧,张延亿.钢筋与活性粉末混凝土粘结滑移本构关系研究[J].科技资讯,2011,8(22):85-88.
Zhao Bei-xiang,Wang Xiao-hui,Zhang Yan-yi. A study on the relationship between rebar and active powder concrete bond slip[J]. Science & Technology Information,2011,8(22):85-88.
13 CECS13:89 钢纤维混凝土试验方法[M].北京:中国建筑工业出版社,1989.
14 Xiao Jian-zhuang, Falkner H. Bond behavior between recycled aggregate concrete and steel rebars[J]. Construction and Building Materials,2007,21(2):395-401.
15 徐有邻,沈文都. 钢筋外形对粘结性能的影响[J]. 工业建筑, 1987, 17(3): 26-30.
Xu You-lin, Shen Wen-du. Effect of reinforcement shape on bonding properties[J]. Industrial Construction, 1987, 17(3): 26-30.
16 卫军,王艺霖,罗晓辉.钢筋拉拔试验中粘结应力分布的曲线拟合[J].铁道科学与工程学报,2005(2):22-24.
Wei Jun,Wang Yi-lin,Luo Xiao-hui. Curve fitting of bond stress distribution in steel bar drawing test[J]. Journal of Railway Science and Engineering,2005(2):22-24.
17 徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D]. 北京:清华大学土木工程学院,1990.
Xu You-lin. Experimental study on the anchoring performance of deformed steel-concrete bonding[D]. Beijing: School of Civil Engineering and Engineering,Tsinghua University, 1990.
[1] 庄蔚敏,王鹏跃,高瑞娟,解东旋. 温热成形对AA5754铝合金静态力学性能的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 847-854.
[2] 陈学文,王继业,杨喜晴,皇涛,宋克兴. Cr8合金钢热变形行为及位错密度演变规律[J]. 吉林大学学报(工学版), 2020, 50(1): 91-99.
[3] 叶辉,朱艳荣,蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5): 1622-1629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!