吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (3): 693-702.doi: 10.13229/j.cnki.jdxbgxb20200812

• 农业工程·仿生工程 • 上一篇    

基于差速辊的青贮玉米籽粒破碎仿真试验及优化

耿端阳1(),孙延成1,牟孝栋1,张国栋1,姜慧新2,朱俊科1   

  1. 1.山东理工大学 农业工程与食品科学学院,山东 淄博 255000
    2.山东省畜牧总站,济南 250002
  • 收稿日期:2020-10-23 出版日期:2022-03-01 发布日期:2022-03-08
  • 作者简介:耿端阳(1969-),男,教授,博士生导师.研究方向:新型农业机械装备研发.E-mail:dygxt@sdut.edu.cn
  • 基金资助:
    山东省农业重大应用技术创新项目(SD2019XM001);山东省农机装备研发创新计划项目(2017YF004)

Simulation test and optimization of grain breakage of silage maize based on differential roller

Duan-yang GENG1(),Yan-cheng SUN1,Xiao-dong MU1,Guo-dong ZHANG1,Hui-xin JIANG2,Jun-ke ZHU1   

  1. 1.School of Agricultural Engineering and Food Science,Shandong University of Technology,Zibo 255000,China
    2.Shandong Animal Husbandry Terminus,Jinan 250002,China
  • Received:2020-10-23 Online:2022-03-01 Published:2022-03-08

摘要:

针对国内青贮玉米收获机籽粒破碎效果差、破碎率低,影响青贮饲料养分转化的问题,基于离散元法建立了玉米籽粒粘结接触模型,确定了其相应参数。结合差速籽粒破碎原理探索了破碎辊间隙、上下破碎辊转速对青贮玉米籽粒破碎率的影响规律,结果表明:上破碎辊转速为5197 r/min、下破碎辊转速(差速比)为3949 r/min、破碎辊间隙为3 mm时,玉米籽粒离散元模型粘结键的平均破碎率达到95.35%。在该上述试验条件下进行台架试验,结果表明,青贮玉米籽粒破碎率达到92.1%,其中75.3%的青贮玉米籽粒小于正常大小的1/4;19.5%的青贮玉米籽粒大于正常大小的1/4;仿真试验与台架试验相对误差为3.25%。试验符合青贮饲料的发酵和养分转化标准,为籽粒破碎技术和装备开发提供了一种新的研究方法。

关键词: 农业工程, 籽粒破碎, 青贮玉米, 离散元法

Abstract:

In order to solve the problems of poor grain crushing effect and low crushing rate of domestic silage corn harvester, which affect the nutrient transformation of silage, a corn grain bonding contact model was established based on discrete element method, and the corresponding bonding model parameters were determined. Combined with the principle of differential grain crushing, the effects of crushing roller gap, upper and lower crushing roller speeds on grain crushing rate of silage corn were explored. The results show that when the upper crushing roller speed was 5197 r/min, the lower crushing roller speed (differential ratio) was 3949 r/min and the crushing roller gap was 3 mm, the average crushing rate of bonding bond of corn grain discrete element model reached 95.35%. The results show that the grain crushing rate of silage corn was 92.1%, about 75.3% of silage corn grains were less than 1/4 of the normal size; 19.5% silage corn grains were larger than 1/4 of normal size. The relative error between simulation test and bench test is 3.25%. It meets the fermentation and nutrient transformation standards of silage, and provides a new research method for the development of grain crushing technology and equipment.

Key words: agricultural engineering, grain breakage, silage corn, discrete element method

中图分类号: 

  • S225.5

图1

青贮玉米籽粒破碎试验台结构示意图"

图2

颗粒粘结模型结构"

图3

颗粒粘结模型的小颗粒分布方式"

图4

玉米籽粒轮廓模型"

图5

玉米籽粒的粘结接触模型"

图6

青贮玉米籽粒位移-载荷变化曲线"

表1

粘结模型参数"

参 数数值
法向刚度系数/(108 N?m-16.25
切向刚度系数/(108 N?m-14.16
临界法向应力/MPa6.42
临界切向应力/MPa7.7
粘结半径/mm1

图7

玉米籽粒模型破碎过程"

图8

下破碎辊转速对籽粒破碎效果的影响"

图9

上破碎辊转速对籽粒破碎的影响效果"

图10

破碎辊间隙对籽粒破碎效果的影响"

表2

试验因素和水平"

水平因 素

上破碎辊转速/

(r·min-1

差速比/%破碎辊间隙/mm

-1

0

1

5064

5129

5197

20

22

24

1

3

5

表3

试验方案及结果"

试验因素粘结键破碎率/%
X1X2X3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

0

-1

0

0

1

0

0

0

-1

-1

1

1

0

0

0

1

-1

0

-1

0

-1

0

1

1

0

0

0

1

-1

0

0

-1

0

1

0

0

0

1

1

-1

1

0

1

-1

0

0

0

0

-1

-1

0

82.19

70.50

82.19

74.33

69.51

85.14

85.96

82.19

71.27

80.16

95.35

83.27

82.19

82.19

78.92

92.22

81.43

表4

方差结果分析"

变异

来源

离均差平方和自由度均方FP
模型807.89989.7711.400.0021
X1262.891262.8933.380.0156*
X2208.491208.4926.470.0083**
X387.65187.6511.130.0035**
X1X20.3210.320.0410.8462
X1X3128.941128.9416.370.0049
X2X37.3217.320.930.3672
X1222.06122.062.800.1382
X2231.41131.413.990.0860
X3261.88161.887.860.0264
残差55.1477.88
失拟55.14318.38
纯误差0.00040.000
误差863.0316

图11

粘结键断裂数量变化过程"

图12

破碎后青贮玉米籽粒"

图13

青贮玉米籽粒破碎试验台"

图14

青贮玉米籽粒破碎情况"

1 王永宏, 赵健, 沈强云, 等. 青贮玉米生物产量及营养积累规律研究[J]. 玉米科学, 2005, 13(4): 81-85.
Wang Yong-hong, Zhao Jian, Shen Qiang-yun, et al. Study on biological yield and nutrient accumulation of silage maize [J]. Journal of Maize Sciences, 2005, 13(4): 81-85.
2 王金龙. 青贮机籽粒破碎装置试验研究[D].秦皇岛:河北科技师范学院机电工程学院,2018.
Wang Jin-long. Experimental study on grain crushing device of silage machine[D]. Qinghuangdao:School of Mechanical and Electrical Engineering, Hebei Normal University of Science and Technology, 2018.
3 薛飞. 自走式青饲料收获机关键部件设计及仿真[D].秦皇岛:河北科技师范学院机电工程学院, 2017.
Xue Fei. Design and simulation of key components of self-propelled green feed harvester[D]. Qinghuangdao:School of Mechanical and Electrical Engineering, Hebei Normal University of Science and Technology, 2017.
4 Cundall P A, Strack O D L. Discussion: a discrete numerical model for granular assemblies[J]. Geotechnique, 1980, 30(3): 331-336.
5 Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364.
6 Cho N, Martin C D, Sego D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010.
7 Metzger M J, Glasser B J. Simulation of the breakage of bonded agglomerates in a ball mill[J]. Powder Technology, 2013, 237: 286-302.
8 Jiménez-Herrera N, Barrios G K P, Tavares L M. Comparison of breakage models in DEM in simulating impact on particle beds[J]. Advanced Powder Technology, 2018, 29(3): 692-706.
9 王扬,王晓梅,陈泽仁,等. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报: 工学版, 2018, 48(5): 1537-1547.
Wang Yang, Wang Xiao-mei, Chen Ze-ren, et al. Modeling method of maize kernels based on discrete element method[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1537-1547.
10 Matsushima T, Saomoto H, Matsumoto M, et al. Discrete element simulation of an assembly of irregularly shaped grains:quantitative comparison with experiments[C]∥16th ASCE Engineering Mechanics Conference, Seattle, 2003: 16-18.
11 Quist Johannes. Cone crusher modeling and simulation [D]. Sweden: Chalmers University of Technology, 2012.
12 Quist J, Evertsson C M. Cone crusher modelling and simulation using DEM[J]. Minerals Engineering, 2016, 85: 92-105.
13 王笑丹, 王洪美, 韩云秀, 等. 基于离散元法的牛肉咀嚼破碎模型构建[J]. 农业工程学报, 2016, 32(4):228-234.
Wang Xiao-dan, Wang Hong-mei, Han Yun-xiu, et al. Structure of beef chewing model based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4): 228-234.
14 赖庆辉, 袁海阔, 胡子武, 等. 滚筒板齿式三七种苗分离装置结构设计与试验[J]. 农业机械学报, 2018, 49(4): 121-129.
Lai Qing-hui, Yuan Hai-kuo, Hu Zi-wu, et al. Design and experiment on seedling separation device of Panax notoginseng seedlings based on roller zigzag mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 121-129.
15 刘凡一, 张舰, 李博, 等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报, 2016, 32(12): 247-253.
Liu Fan-yi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Journal of Agricultural Engineering, 2016, 32(12): 247-253.
16 史嵩, 张东兴, 杨丽, 等. 基于 EDEM 软件的气压组合孔式排种器充种性能模拟与验证[J]. 农业工程学报, 2015, 31(3): 62-69.
Shi Song, Zhang Dong-xing, Yang Li, et al. Simulation and verification of seed filling performance of pneumatic combined hole seed metering device based on EDEM software[J]. Journal of Agricultural Engineering, 2015, 31(3): 62-69.
17 于亚军, 于建群, 陈仲, 等. 三维离散元法边界建模软件设计[J].农业机械学报, 2011, 42(8): 99-103, 98.
Yu Ya-jun, Yu Jian-qun, Chen Zhong, et al. Design of 3-D DEM boundary modeling software[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(8): 99-103, 98.
18 Coetzee C J, Els D N. Calibration of discrete element parameters and the modelling of silo discharge and bucket filling[J]. Computers and Electronics in Agriculture, 2009, 65(2): 198-212.
19 Bin R. CFD-DEM simulation of spouting of corn-shaped particles[J]. China Particuology, 2012, 10(5): 562-572.
20 蔡鹏. 基于离散元的双齿辊破碎机破碎性能分析与齿形优化[D]. 长沙:湖南大学机械与运载工程学院, 2014.
Cai Peng. Analysis of crushing performance and optimization of tooth shape of a two-tooth roll crusher based on discrete element[D]. Changsha: School of Mechanical and Transport Engineering, Hunan University, 2014.
21 张锋伟, 宋学锋, 张雪坤, 等. 玉米秸秆揉丝破碎过程力学特性仿真与试验[J]. 农业工程报, 2019, 35(9): 58-65.
Zhang Feng-wei, Song Xue-feng, Zhang Xue-kun, et al. Simulation and test of mechanical properties of corn straw crushing process[J]. Chinese Journal of Agricultural Engineering, 2019, 35(9): 58-65.
22 Weerasekara N S, Powell M S, Cleary P W, et al. The contribution of DEM to the science of comminution[J]. Powder Technology, 2013, 248: 3-24.
23 ASABE—S368. Compression test of food material of convex shape [S].
24 Coşkun M B, Yalçin I, Özarslan C. Physical properties of sweet corn seed (zea mays saccharata sturt) [J]. Journal of Food Engineering, 2006, 74(4): 523-528.
25 ASAE—2002. American society of agricultural engineers. compression test of food materials of convex shape [S].
26 Molenda M, Montross M D, Ross I J, et al. Mechanical properties of corn and soy bean meal[J]. Transactions of the ASAE, 2002,45(6): 1929-1936.
27 石博, 卢妍妍. 约翰迪尔7380型自走式青贮收获机[J].现代化农业, 2015, 36(9): 43.
Shi-Bo, Lu Yan-yan. John deere 7380 self-propelled silage harvester[J]. Modern Agriculture, 2015, 36(9): 43.
28 卢妍妍, 杨帆. 约翰迪尔8400型自走式青贮收获机(一)[J]. 现代化农业, 2016, 37(6): 44.
Lu Yan-yan, Yang Fan. John deere 8400 self-propelled silage harvester(I)[J]. Modern Agriculture, 2016, 37(6): 44.
29 Ferraretto L F, Shaver R D. Meta-analysis:impact of corn silage harvest practice on intake,digestion and milk production by dairy cows[J]. The Professional Animal Scientist, 2012, 28(2):141-149.
30 张乐. 基于离散元法的矿石高压辊磨破碎研究[D].湘潭:湘潭大学机械工程学院, 2016.
Zhang Le. Study on ore crushing by high pressure roller mill based on discrete element method[D]. Xiangtan: School of Mechanical Engineering, Xiangtan University, 2016.
31 陈阳, 胡志超, 吴惠昌, 等. 基于EDEM的单粒式谷物水分仪采样机构仿真研究[J]. 农机化研究, 2016, 38(7): 239-244, 262.
Chen Yang, Hu Zhi-chao, Wu Hui-chang, et al. Simulation study on sampling mechanism of grain moisture meter based on edem [J]. Agricultural Mechanization Research, 2016, 38(7): 239-244, 262.
32 付宏, 吕游, 李艳双, 等. 基于离散元法的玉米脱粒过程分析[J].吉林大学学报:工学版, 2012, 42(4): 997-1002.
Fu Hong, Lyu You, Li Yan-shuang, et al. Analysis for corn threshing process based DEM[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(4): 997-1002.
33 . 玉米青贮收获机作业质量 [S].
[1] 梁方,王德成,尤泳,王光辉,王宇兵,张晓明,冯金奎. 草地切根施肥补播复式改良机设计与试验[J]. 吉林大学学报(工学版), 2022, 52(1): 231-241.
[2] 王国伟,朱庆辉,于海业,黄东岩. 基于数字化农机装备的青贮饲料可追溯系统[J]. 吉林大学学报(工学版), 2022, 52(1): 242-252.
[3] 耿端阳,牟孝栋,张国栋,王宗源,朱俊科,徐海刚. 小麦联合收获机清选机理分析与优化试验[J]. 吉林大学学报(工学版), 2022, 52(1): 219-230.
[4] 王新彦,江泉,吕峰,易政洋. 基于参数化模型的零转弯半径割草机侧翻稳定性[J]. 吉林大学学报(工学版), 2021, 51(5): 1908-1918.
[5] 钱震杰,金诚谦,袁文胜,倪有亮,张光跃. 柔性脱粒齿杆与谷物含摩擦打击动力学模型[J]. 吉林大学学报(工学版), 2021, 51(3): 1121-1130.
[6] 程超,付君,陈志,任露泉. 玉米籽粒收获机清选筛堵塞规律及脱附试验[J]. 吉林大学学报(工学版), 2021, 51(2): 761-771.
[7] 丛茜,徐金,马博帅,张晓超,陈廷坤. 基于虚拟仿真的拖拉机后悬挂检测装置设计与实验[J]. 吉林大学学报(工学版), 2021, 51(2): 754-760.
[8] 陈学深,黄柱健,马旭,齐龙,方贵进. 水稻机械除草避苗控制系统设计与试验[J]. 吉林大学学报(工学版), 2021, 51(1): 386-396.
[9] 耿端阳,谭德蕾,于兴瑞,苏国粱,王骞,鹿秀凤,金诚谦. 玉米柔性脱粒滚筒脱粒元件设计与试验[J]. 吉林大学学报(工学版), 2020, 50(5): 1923-1933.
[10] 高锐涛,单建,杨洲,文晟,兰玉彬,张泉勇,汪洋. 植保无人机变量喷雾处方图实时解译系统的设计与试验[J]. 吉林大学学报(工学版), 2020, 50(1): 361-374.
[11] 刘恩泽,吴文福. 基于综合指标品质评价算法的单色水果生长状态检测互联网架构[J]. 吉林大学学报(工学版), 2019, 49(6): 2019-2026.
[12] 秦嘉浩,李臻,光岡宗司,井上英二,宋正河,朱忠祥. 基于模型实验的拖拉机配置对稳定性的影响差异[J]. 吉林大学学报(工学版), 2019, 49(4): 1236-1245.
[13] 梁方,尤泳,王德成,王光辉,贺长彬,李帅. 运动参数对草地切根刀具与土壤作用关系的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 903-911.
[14] 王扬, 王晓梅, 陈泽仁, 于建群. 基于离散元法的玉米籽粒建模[J]. 吉林大学学报(工学版), 2018, 48(5): 1537-1547.
[15] 陈东辉, 吕建华, 龙刚, 张宇晨, 常志勇. 基于ADAMS的半悬挂式农业机组静侧翻稳定性[J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!