吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2055-2062.doi: 10.13229/j.cnki.jdxbgxb20220142
• • 上一篇
Heng ZHANG1,2(),Zhi-gang ZHAN2(),Ben CHEN3,Pang-chieh SUI3,Mu PAN2
摘要:
为研究质子交换膜燃料电池(PEMFC)气体扩散层(GDL)内孔隙率对各向异性传输特性参数的影响,首先,使用数值随机重构的方法对Toray TGP-H气体扩散层进行三维微观结构重构。在重构中考虑到了碳纤维分布的各向异性以及Toray TGP-H气体扩散层内部所有的相,包括孔、碳纤维、黏合剂和聚四氟乙烯。然后,利用孔尺度模型分别研究了孔隙率与有效扩散率、曲度、有效电导率、有效热导率以及液态水渗透率在厚度方向和平面内方向的关系。结果表明:孔隙率对传输特性有显著的影响,并且Toray TGP-H气体扩散层的传输特性在平面方向和厚度方向存在着十分明显的各向异性。
中图分类号:
1 | Liu Q, Lan F, Chen J, et al. A review of proton exchange membrane fuel cell water management: membrane electrode assembly[J]. Journal of Power Sources, 2022, 517: No. 230723. |
2 | Okonkwo P C, Otor C. A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system[J]. International Journal of Energy Research, 2020, 45(3): 3780-3800. |
3 | Zhu L, Zhang H, Xiao L, et al. Pore-scale modeling of gas diffusion layers: effects of compression on transport properties[J]. Journal of Power Sources, 2021, 496: No. 229822. |
4 | Simaafrookhteh S, Taherian R, Shakeri M. Stochastic microstructure reconstruction of a Binder/Carbon fiber/expanded graphite carbon fiber paper for PEMFCs applications: mass transport and conductivity properties[J]. Journal of The Electrochemical Society, 2019, 166(7): 3287-3299. |
5 | Simaafrookhteh S, Shakeri M, Baniassadi M, et al. Microstructure reconstruction and characterization of the porous GDLs for PEMFC based on fibers orientation distribution[J]. Fuel Cells, 2018, 18(2): 160-172. |
6 | Xiao L S, Luo M, Zhang H, et al. Solid mechanics simulation of reconstructed gas diffusion layers for PEMFCs[J]. Journal of The Electrochemical Society, 2019, 166(6): F377-F385. |
7 | Straubhaar B, Pauchet J, Prat M. Pore network modelling of condensation in gas diffusion layers of proton exchange membrane fuel cells[J]. International Journal of Heat and Mass Transfer, 2016, 102: 891-901. |
8 | Kim K N, Kang J H, Lee S G, et al. Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 278: 703-717. |
9 | Zhu L J, Yang W F, Xiao L S, et al. Stochastically modeled gas diffusion layers: effects of binder and polytetrafluoroethylene on effective gas diffusivity[J]. Journal of the Electrochemical Society, 2021, 168: No. 014514. |
10 | Zhu L J, Wang S F, Sui P C, et al. Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20702-20714. |
11 | Göbel M, Godehardt M, Schladitz K. Multi-scale structural analysis of gas diffusion layers[J]. Journal of Power Sources, 2017, 355: 8-17. |
12 | Schladitz K, Peters S, Reinel-Bitzer D, et al. Design of acoustic trim based on geometric modeling and flow simulation for non-woven[J]. Computational Materials Science, 2006, 38(1): 56-66. |
13 | Yiotis A G, Kainourgiakis M E, Charalambopoulou G C, et al. Microscale characterisation of stochastically reconstructed carbon fiber-based gas diffusion layers; effects of anisotropy and resin content[J]. Journal of Power Sources, 2016, 320: 153-167. |
14 | Didari S, Wang Y, Harris T A L. Modeling of gas diffusion layers with curved fibers using a genetic algorithm[J]. International Journal of Hydrogen Energy, 2017, 42(36): 23130-23140. |
15 | Didari S, Asadi A, Wang Y, et al. Modeling of composite fibrous porous diffusion media[J]. International Journal of Hydrogen Energy, 2014, 39(17): 9375-9386. |
16 | Chen W, Jiang F M. Impact of PTFE content and distribution on liquid-gas flow in PEMFC carbon paper gas distribution layer: 3D lattice Boltzmann simulations[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8550-8562. |
17 | Daino M M, Kandlikar S G. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions[J]. International Journal of Hydrogen Energy, 2012, 37(6): 5180-5189. |
18 | Zhang H, Xiao L S, Chuang P-Y A, et al. Coupled stress–strain and transport in proton exchange membrane fuel cell with metallic bipolar plates[J]. Applied Energy, 2019, 251: No. 113316. |
19 | Niu X D, Munekata T, Hyodo S A, et al. An investigation of water-gas transport processes in the gas-diffusion-layer of a PEM fuel cell by a multiphase multiple-relaxation-time lattice Boltzmann model[J]. Journal of Power Sources, 2007, 172(2): 542-552. |
20 | Fishman Z, Hinebaugh J, Bazylak A. Microscale tomography investigations of heterogeneous porosity distributions of PEMFC GDLs[J]. Journal of the Electrochemical Society, 2010, 157(11): B1643-B1650. |
[1] | 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981. |
[2] | 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003. |
[3] | 刘镇宁,江柯,赵韬韬,樊文选,卢国龙. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报(工学版), 2022, 52(9): 2025-2033. |
[4] | 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995. |
[5] | 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024. |
[6] | 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970. |
[7] | 李小雨,许男,仇韬,郭孔辉. 各向异性刚度对轮胎力学特性及车辆操纵性的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 389-398. |
[8] | 张田, 孙延奎, 田小林. 二进小波与扩散滤波结合的光学相干层析图像降噪[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 340-344. |
[9] | 张赋, 李旭东. 多晶体材料微结构仿真与数值计算[J]. 吉林大学学报(工学版), 2013, 43(02): 368-375. |
[10] | 李成;郑艳萍;铁瑛 . 纤维排列方向对含圆孔的各向异性板应力场影响的仿真分析[J]. 吉林大学学报(工学版), 2008, 38(03): 544-0547. |
[11] | 李成,刘治华,郑艳萍 . 各向异性度对含矩形孔复合材料板孔边应力状态的影响[J]. 吉林大学学报(工学版), 2007, 37(06): 1327-1231. |
[12] | 朱勇建, 那景新, 闫亚坤, 胡平. 应用直接法求解拉延筋约束力[J]. 吉林大学学报(工学版), 2003, (1): 92-97. |
|