吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2014-2024.doi: 10.13229/j.cnki.jdxbgxb20220259

• • 上一篇    

基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制

裴尧旺1(),陈凤祥1(),胡哲2,翟双2,裴冯来3,张卫东4,焦杰然1   

  1. 1.同济大学 汽车学院,上海 201804
    2.上海重塑能源集团股份有限公司,上海 201800
    3.上海机动车检测认证技术研究中心有限公司,上海 201805
    4.海南大学 信息与通信工程学院,海口 570228
  • 收稿日期:2022-03-17 出版日期:2022-09-01 发布日期:2022-09-13
  • 通讯作者: 陈凤祥 E-mail:peiyw1997@163.com;fxchen@tongji.edu.cn
  • 作者简介:裴尧旺(1997-),男,博士研究生. 研究方向:燃料电池热管理技术.E-mail:peiyw1997@163.com
  • 基金资助:
    国家自然科学基金项目(U21A20166)

Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control

Yao-wang PEI1(),Feng-xiang CHEN1(),Zhe HU2,Shuang ZHAI2,Feng-lai PEI3,Wei-dong ZHANG4,Jie-ran JIAO1   

  1. 1.School of Automotive Studies,Tongji University,Shanghai 201804,China
    2.Shanghai Re-fire Technology Co. ,Ltd. ,Shanghai 201800,China
    3.Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co. ,Ltd. ,Shanghai 201805,China
    4.College of Information and Communication Engineering,Hainan University,Haikou 570228,China
  • Received:2022-03-17 Online:2022-09-01 Published:2022-09-13
  • Contact: Feng-xiang CHEN E-mail:peiyw1997@163.com;fxchen@tongji.edu.cn

摘要:

为了提高燃料电池的运行效率,必须对其工作温度进行有效控制。本文在Matlab/Simulink平台上搭建了热管理系统模型,该模型可用于分析各零部件之间的流量分配、压力损失以及热量交换。在此模型基础上,提出了一种自适应的线性二次型调节器(LQR)控制器,并在不同工况下与LTI-LQR和LQI控制器进行了仿真对比验证。仿真结果显示:阶跃响应测试下,自适应LQR控制器无稳态误差、无超调、上升时间为15 s;动态性能测试下,电堆出口温度在全局范围内均能快速地跟踪参考值,说明该控制器具有良好的控制性能。

关键词: 车辆工程, 质子交换膜燃料电池, 热管理系统, 动态反馈增益, 线性二次型调节器

Abstract:

In order to improve the operation efficiency of fuel cell, its working temperature must be effectively controlled. In this paper, the thermal management system model is built on the Matlab/Simulink platform. The model can be used to analyze the flow distribution, pressure loss and heat exchange between various parts. Based on this model, an adaptive linear quadratic regulator (LQR) controller is proposed and compared with LTI-LQR and LQI controllers under different working conditions. The simulation results show that under the step response test, the adaptive LQR controller has no steady-state error, no overshoot and the rising time is 15 s; under the dynamic performance test, the stack outlet temperature can quickly track the reference value in the global range, which fully reflects the advantages of the controller.

Key words: vehicle engineering, proton exchange membrane fuel cell(PEMFC), thermal management system, dynamic feedback gain, linear quadratic regulator(LQR)

中图分类号: 

  • U469.72

图1

热管理系统的原理图"

图2

电堆能量转化示意图"

图3

110 kW电堆极化曲线与功率"

表1

110 kW电堆额定工况参数"

参数数值参数数值
?0.85Ist/A477
Ast/m21.5ncell370
Tst/K356λ2
Tamb/K298φ0.21
ΔTair/K10

图4

LQY-P80高压电子水泵流量-扬程曲线"

图5

ECV-0350B节温器特性曲线"

图6

风扇散热原理示意图"

图7

控制策略原理图"

表2

平衡工作点参数"

参数序号
12345
Ist/A100200300400500
U/V0.790.750.710.680.63
m˙col/(kg·s-12.472.883.213.533.95
Tst/K343.76351.74358.91360.02361.25
Tst_e/K342.93350.00356.15356.15356.15
Trad_e/K310.41324.22333.97339.49344.38
Tiloop_e/K342.93350.00356.15356.15356.15
α0.0850.200.320.550.91

表3

各平衡工作点的LTI模型"

序号Ist/AABuBwC
1100-0.47620.47620???????????0???????????2.6582-3.44610.72090.06700???????????4.3254-4.32540???????????0???????????0.10050???????????-0.36630???????????-25.62580???????????38.43863.9384×10-30???????????00???????????00???????????00.2658[0100]
2200-0.47620.47620???????????0???????????2.6582-3.57690.73830.18030???????????4.4300-4.43000???????????0???????????0.27050???????????-0.53630???????????-23.67800???????????35.51632.8860×10-30???????????00???????????00???????????00.2658[0100]
3300-0.47620.47620???????????0???????????2.6582-3.68200.69330.33060???????????4.1598-4.15980???????????0???????????0.49590???????????-0.80160???????????-22.71060???????????34.06592.8857×10-30???????????00???????????00???????????00.2415[0100]
4400-0.47620.47620???????????0???????????2.6582-3.78290.47310.65170???????????3.0408-3.04080???????????0???????????0.92690???????????-1.29900???????????-18.73790???????????28.10684.6103×10-30???????????00???????????00???????????00.3721[0100]
5500-0.47620.47620???????????0???????????2.6582-3.91820.10861.15140???????????0.6517-0.65170???????????0???????????1.72700???????????-2.16560???????????-13.55150???????????22.24474.8587×10-30???????????00???????????00???????????00.4386[0100]

图8

原模型与Ist=300 A处线性化模型输出响应对比"

表4

各平衡工作点K值"

序号Ist/AK
1100-1.0664???-9.6349??-0.0675???0.2338?-1
2200-1.0745???-9.6196??-0.0700???0.2288?-1
3300-0.9893??-9.6083??-0.0694???0.2223??-1
4400-0.9566??-9.5642??-0.0665???0.2068??-1
5500-1.1747??-9.4207??-0.0708???0.1896???-1

图9

稳态工况测试对比图"

图10

阶跃测试对比图"

图11

动态性能测试对比图"

图12

控制器鲁棒性检验"

1 Pandiyan S, Jayakumar K, Rajalakshmi N, et al. Thermal and electrical energy management in a PEMFC stack—an analytical approach[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 469-473.
2 Rojas J D, Ocampo-Martínez C, Kunusch C. Thermal modelling approach and model predictive control of a water-cooled PEM fuel cell system[C]∥39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: 3806-3811.
3 Han J, Yu S, Yi S. Advanced thermal management of automotive fuel cells using a model reference adaptive control algorithm[J]. International Journal of Hydrogen Energy, 2017, 42(7): 4328-4341.
4 Chen F, Jiao J, Yu Y, et al. Active control of stack inlet and outlet coolant temperature for the PEM fuel cell system[C]∥2017 International Conference on Fuel Cell Science, Engineering and Technology, Tianjin, China, 2017: No. V001T01A001.
5 Yu S, Jung D. A study of operation strategy of cooling module with dynamic fuel cell system model for transportation application[J]. Renewable Energy, 2010, 35(11): 2525-2532.
6 Saygili Y, Eroglu I, Kincal S. Model based temperature controller development for water cooled PEM fuel cell systems[J]. International Journal of Hydrogen Energy, 2015, 40(1): 615-622.
7 Pukrushpan J T. Modeling and control of fuel cell systems and fuel processors[D]. Michigan: The University of Michigan, 2003.
8 牛茁,张玉瑾,邓惠文,等. 基于OPC技术的水冷PEMFC热管理控制系统[J]. 太阳能学报,2019, 40(4): 942-949.
Niu Zhuo, Zhang Yu-jin, Deng Hui-wen, et al. Thermal management system of water-cooled PEMFC based on OPC technology[J]. Acta Energiae Solaris Sinica, 2019, 40(4), 942-949.
9 郑文杰,杨径,朱林培,等. 车用燃料电池热管理性能仿真与试验研究[J]. 汽车工程,2021,43(3): 381-386.
Zheng Wen-jie, Yang Jing, Zhu Lin-pei, et al Simulation and experimental study on thermal management system of vehicle fuel cell[J]. Automotive Engineering, 2021, 43(3): 381-386.
10 郭爱,陈维荣,刘志祥,等. 燃料电池机车热管理系统建模和动态分析[J]. 西南交通大学学报,2015,50(5): 953-960.
Guo Ai, Chen Wei-rong, Liu Zhi-xiang, et al. Modeling and dynamic analysis of thermal management system for fuel cell locomotive[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 953-960.
11 赵洪波,刘杰,马彪,等. 水冷PEMFC热管理系统控制策略及仿真研究[J]. 化工学报,2020,71(5): 2139-2150.
Zhao Hong-bo, Liu Jie, Ma Biao, et al. Control strategy and simulation research of water-cooled PEMFC thermal management system[J]. CIESC Journal, 2020, 71(5): 2139-2150.
12 Cheng Si-liang, Fang Chuan, Xu Liang-fei, et al. Model-based temperature regulation of a PEM fuel cell system on a city bus[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13566-13575.
13 Huang L H, Chen J, Liu Z Y, et al. Adaptive thermal control for PEMFC systems with guaranteed performance[J]. International Journal of Hydrogen Energy, 2018, 43(25): 11550-11558.
14 Liso V, Nielsen M P, Kaer S K, et al. Thermal modeling and temperature control of a PEM fuel cell system for forklift applications[J]. International Journal of Hydrogen Energy, 2014, 39(16): 8410-8420.
15 刘岩, 丁天威, 王宇鹏, 等. 基于自适应控制的燃料电池发动机热管理策略[J]. 吉林大学学报: 工学版, DOI:10.13229/j.cnki.jdxbgxb20220346 .
doi: 10.13229/j.cnki.jdxbgxb20220346
Liu Yan, Ding Tian-wei, Wang Yu-peng, Du Jing, Zhao hong-hui. Thermal management strategy of fuel cell engine based on adaptive control strategy[J]. Journal of Jilin University (Engineering and Technology Edition), DOI:10.13229/j.cnki.jdxbgxb20220346 .
doi: 10.13229/j.cnki.jdxbgxb20220346
16 Chen F X, Jiao J R, Hou Z J, et al. Robust polymer electrolyte membrane fuel cell temperature tracking control based on cascade internal model control[J]. Journal of Power Sources, 2020, 479: No. 229008.
17 Han J, Park J, Yu S. Control strategy of cooling system for the optimization of parasitic power of automotive fuel cell system[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13549-13557.
18 沈维道,童钧耕. 工程热力学[M]. 4版. 北京:高等教育出版社出版,2007.
19 谭羽飞. 工程热力学[M]. 6版. 北京:中国建筑工业出版社,2016.
20 刘占孟,兰蔚. 流体力学[M]. 北京:科学出版社,2017.
21 Rojas J D, Ocampo-Martinez C, Kunusch C. Thermal modelling approach and model predictive control of a water-cooled pem fuel cell system[C]∥39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: No.14003725.
22 郭爱. 基于过氧比的车载燃料电池系统控制技术[D]. 成都: 西南交通大学电气工程学院, 2015.
Guo Ai. Control of fuel cell system for vehicle based on oxygen excess ratio[D]. Chengdu: School of Electrical Engineering, Southwest Jiaotong University, 2015.
[1] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[2] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[3] 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995.
[4] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[5] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[6] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[7] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[8] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
[9] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[10] 聂光明,谢波,田彦涛. 基于Frenet框架的协同自适应巡航控制算法设计[J]. 吉林大学学报(工学版), 2022, 52(7): 1687-1695.
[11] 郝帅,程川泰,王军年,张君媛,俞有. 运动型SUV驾驶室布置人机优化设计与测试评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1477-1488.
[12] 张家旭,郭崇,王晨,赵健,王欣志. 基于半实物仿真平台的自动泊车系统性能评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1552-1560.
[13] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[14] 李雄,兰凤崇,陈吉清,童芳. Hybird III假人模型与CHUBM人体生物力学模型的正碰损伤对比[J]. 吉林大学学报(工学版), 2022, 52(6): 1264-1272.
[15] 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!