吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 1996-2003.doi: 10.13229/j.cnki.jdxbgxb20220345

• • 上一篇    

车用质子交换膜燃料电池空气系统过氧比控制方法

张佩1,2,3(),王志伟1,2,3,杜常清1,2,3(),颜伏伍1,2,3,卢炽华1,2,3   

  1. 1.武汉理工大学 现代汽车零部件技术湖北省重点实验室,武汉 430070
    2.武汉理工大学 汽车零部件技术湖北省协同创新中心,武汉 430070
    3.武汉理工大学 新能源与智能网联车湖北工程技术研究中心,武汉 430070
  • 收稿日期:2022-03-30 出版日期:2022-09-01 发布日期:2022-09-13
  • 通讯作者: 杜常清 E-mail:zhangpei@whut.edu.cn;cq_du@126.com
  • 作者简介:张佩(1986-),女,讲师,博士. 研究方向:车用燃料电池系统控制. E-mail:zhangpei@whut.edu.cn
  • 基金资助:
    湖北省科技重大专项项目(2021AAA006);先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金项目(XHD2020-003)

Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle

Pei ZHANG1,2,3(),Zhi-wei WANG1,2,3,Chang-qing DU1,2,3(),Fu-wu YAN1,2,3,Chi-hua LU1,2,3   

  1. 1.Hubei Key Laboratory of Modern Auto Parts Technology,Wuhan University of Technology,Wuhan 430070,China
    2.Auto Parts Technology Hubei Collaborative Innovation Center,Wuhan University of Technology,Wuhan 430070,China
    3.Hubei Technology Research Center of New Energy and Intelligent Connected Vehicle Engineering,Wuhan University of Technology,Wuhan 430070,China
  • Received:2022-03-30 Online:2022-09-01 Published:2022-09-13
  • Contact: Chang-qing DU E-mail:zhangpei@whut.edu.cn;cq_du@126.com

摘要:

针对车用质子交换膜燃料电池(PEMFC)系统最佳过氧比(OER)控制问题,基于60 kW PEMFC系统,构建了面向控制的三阶非线性空气系统模型,分别设计了基于稳态工作点近似线性化模型的动态前馈+PI控制器和基于全局线性化模型的前馈/反馈线性化控制器。仿真结果表明:前馈/反馈线性化方法解决了基于近似线性化模型控制方法由于模型误差而使OER响应存在稳态误差的问题,并且通过引入非线性前馈环节消除了负载电流变化对OER响应的影响,能在不同工况负载下跟踪最佳OER,有效提高了PEMFC系统效率。

关键词: 车辆工程, 质子交换膜燃料电池系统, 空气供应系统, 过氧比, 前馈/反馈线性化

Abstract:

Aiming at the problem of optimal oxygen excess ratio (OER) control method of vehicle proton exchange membrane fuel cell (PEMFC) system, a control oriented third-order nonlinear air system model based on 60 kW PEMFC system was constructed, and dynamic feedforward+PI controller based on steady-state operating point approximate linearization model and feedforward/feedback linearization controller based on global linearization model were designed respectively. The simulation results show that the feedforward/feedback linearization method solves the problem of steady-state error in OER response due to model error based on approximate linearization model control method, and eliminates the influence of load current change on OER response by introducing nonlinear feedforward structure. In addition, the feedforward/feedback linearization control method can track the best OER under different working conditions, and effectively improve the efficiency of PEMFC system.

Key words: vehicle engineering, proton exchange membrane fuel cell system(PEMFC), air supply system, oxygen excess ratio(OER), feedforward/feedback linearization

中图分类号: 

  • TM911.4

表1

模型参数"

定义取值
电机机械效率ηcm0.9
压缩机效率ηcp0.8
电机电枢内阻Rcm0.82
电机转矩灵敏度常数kt/(N·m·A-10.0153
电机反电动势常数kv/[V·(rad-1·s)]0.0153
压缩机转动惯量Jcp/10-5 (kg·m25
空气比热容Cp/[J·(kg·K)-11004
大气温度Tatm/K298.15
热比例系数γ1.4
进气管道体积Vsm/m30.02
进气管道出口流量常数ksm/10-6 [kg·(s·Pa)-13.629
空气气体常数Ratm/[J·(kg·K)-1286.9
电堆阴极温度Tst/K353.15
电堆阴极出口流量系数kca/10-6 [kg·(s·Pa)-11.5
阴极侧体积Vca/m30.01
大气压力Patm/Pa101 325
理想气体常数R8.314 5
电堆电池片数n_cell300
法拉第常数F96 485
氧气的摩尔质量/(kg·mol-10.032
空气中氧气的质量分数0.232

图1

动态前馈+PI反馈控制器结构"

图2

阶跃电流信号"

图3

阶跃电流条件下的过氧比响应"

图4

误差反馈控制器结构"

图5

过氧比响应(第一组仿真)"

图6

斜坡电流信号"

图7

过氧比响应(第二组仿真)"

表2

最佳过氧比部分标定值"

负载电流/A

最佳过氧比

标定值

负载电流/A

最佳过氧比

标定值

31.322.140254.462.187
58.702.094283.862.037
86.092.320312.202.011
113.492.140340.202.080
142.872.016368.102.041
169.282.180397.502.040
198.672.098422.902.035
227.072.096451.802.020

图8

过氧比响应(第三组仿真)"

1 王哲,谢怡,臧鹏飞,等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报: 工学版,2020,50(1):36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy of fuel cell bus based on Pontryagin's minimum principle[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
2 Deng Z H, Chen Q H, Zhang L Y, et al. Weighted fusion control for proton exchange membrane fuel cell system[J]. International Journal of Hydrogen Energy, 2020, 45(30): 15327-15335.
3 Tang X, Wang C S, Hu Y K, et al. Adaptive fuzzy PID based on granular function for proton exchange membrane fuel cell oxygen excess ratio control[J]. Energies, 2021, 14(4): 1-18.
4 Li J W, Yu T. A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system[J]. Energy Reports, 2021, 7: 1267-1279.
5 Li J W, Geng J, Yu T. Multi-objective optimal control for proton exchange membrane fuel cell via large-scale deep reinforcement learning[J]. Energy Reports, 2021, 7: 6422-6437.
6 Zhu J, Zhang P, Li X, et al. Robust oxygen excess ratio control of PEMFC systems using adaptive dynamic programming[J]. Energy Reports, 2022, 8: 2036-2044.
7 Yang D, Pan R, Wang Y J, et al. Modeling and control of PEMFC air supply system based on T-S fuzzy theory and predictive control[J]. Energy, 2019, 188: No. 116078.
8 Wang Y H, Li H T, Feng H M, et al. Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID[J]. Energy Conversion and Management, 2021, 249: No. 114851.
9 Sun T, Zhang X, Chen B, et al. Coordination control strategy for the air management of heavy vehicle fuel cell engine[J]. International Journal of Hydrogen Energy, 2020, 45(39): 20360-20368.
10 Zhao D D, Xia L, Dang H B, et al. Design and control of air supply system for PEMFC UAV based on dynamic decoupling strategy[J]. Energy Conversion and Management, 2022, 253: No. 115159.
11 马彦,朱添麟. 燃料电池空气供应系统非线性鲁棒控制[J]. 车用发动机,2021,43(1):9-17.
Ma Yan, Zhu Tian-lin. Nonlinear robust control of fuel cell air supply system[J]. Vehicle Engine, 2021, 43(1): 9-17.
12 Pukrushpan J T. Modeling and control of fuel systems and fuel processors[D]. Michigan: The University of Michigan, 2003.
13 Suh K W. Modeling, analysis and control of fuel cell hybrid power systems[D]. Michigan: The University of Michigan, 2006.
14 Talj R J, Hissel D, Becherif M, et al. Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6): 1906-1913.
15 李琳琳,赵长安,杨国军,等. 具有可测干扰非线性系统的前馈/反馈线性化[J]. 电机与控制学报,2000,4(1):31-34.
Li Lin-lin, Zhao Chang-an, Yang Guo-jun, et al. Feedforward/feedback linearization of nonlinear systems with measurable disturbances[J]. Electric Machines and Control, 2000, 4(1): 31-34.
[1] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[2] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[3] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[4] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
[5] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[6] 郝帅,程川泰,王军年,张君媛,俞有. 运动型SUV驾驶室布置人机优化设计与测试评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1477-1488.
[7] 张家旭,郭崇,王晨,赵健,王欣志. 基于半实物仿真平台的自动泊车系统性能评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1552-1560.
[8] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[9] 聂光明,谢波,田彦涛. 基于Frenet框架的协同自适应巡航控制算法设计[J]. 吉林大学学报(工学版), 2022, 52(7): 1687-1695.
[10] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[11] 李雄,兰凤崇,陈吉清,童芳. Hybird III假人模型与CHUBM人体生物力学模型的正碰损伤对比[J]. 吉林大学学报(工学版), 2022, 52(6): 1264-1272.
[12] 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280.
[13] 张英朝,李昀航,郭子瑜,王国华,张喆,苏畅. 长头重型卡车气动减阻优化[J]. 吉林大学学报(工学版), 2022, 52(4): 745-753.
[14] 史文库,张曙光,张友坤,陈志勇,江逸飞,林彬斌. 基于改进海鸥算法的磁流变减振器模型辨识[J]. 吉林大学学报(工学版), 2022, 52(4): 764-772.
[15] 李杰,陈涛,郭文翠,赵旗. 汽车非平稳随机振动空间域虚拟激励法及应用[J]. 吉林大学学报(工学版), 2022, 52(4): 738-744.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!