吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (10): 2839-2846.doi: 10.13229/j.cnki.jdxbgxb.20220134

• 交通运输工程·土木工程 • 上一篇    下一篇

基于贝叶斯网的空铁联程乘客出行满意度模型

杨敏1,2(),张聪伟1,2,李大韦1,2(),马晨翔1,2   

  1. 1.东南大学 城市智能交通江苏省重点实验室,南京 211189
    2.东南大学 交通学院,南京 211189
  • 收稿日期:2022-02-14 出版日期:2023-10-01 发布日期:2023-12-13
  • 通讯作者: 李大韦 E-mail:yangmin@seu.edu.cn;lidawei@seu.edu.cn
  • 作者简介:杨敏(1981-),男,教授,博士.研究方向:公共客运交通智慧出行服务.E-mail:yangmin@seu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB1601300);国家自然科学基金项目(52072066);江苏省杰出青年科学基金项目(BK20200014);江苏省交通科技计划项目(2020Y12)

Travel satisfaction model for air-rail integration passengers based on Bayesian network

Min YANG1,2(),Cong-wei ZHANG1,2,Da-wei LI1,2(),Chen-xiang MA1,2   

  1. 1.Jiangsu Key Laboratory of Urban ITS,Southeast University,Nanjing 211189,China
    2.School of Transportation,Southeast University,Nanjing 211189,China
  • Received:2022-02-14 Online:2023-10-01 Published:2023-12-13
  • Contact: Da-wei LI E-mail:yangmin@seu.edu.cn;lidawei@seu.edu.cn

摘要:

为揭示空铁联程乘客感知对乘客总体满意度影响情况,建立了包含目标层、中间层以及指标层的三层指标体系,结合GTT(Greedy thick thinning)与EM(Expectation maximization)算法构建了贝叶斯网,分析了9个分类满意度对乘客总体满意度的影响。结果显示,各分类满意度对总体满意度影响从强到弱依次为个性化、衔接性、运营、可靠性、票务、舒适性以及信息服务,可达性与安全性对总体满意度影响甚微。交叉分析结果定量反映了乘客满意度指标间的复杂相互关系。采用重要性-绩效分析法(IPA)定量分析了后续改善策略,得出目前运营班次、行李托运、开通线路、运营时段需要进行重点改善,换乘指示、座椅舒适、取票便捷、票价、换乘质量、信息规划存在过度改善问题。

关键词: 交通运输规划与管理, 满意度分析, 贝叶斯网, 空铁联程, 组合分析

Abstract:

To reveal the impact of air-rail passenger perception on overall passenger satisfaction, a three-layer satisfaction index system (the target, intermediate, and indicator layers) was established. The Bayesian network model was constructed by combining GTT and EM algorithms to analyze the influence of nine categories of satisfaction. The results show that the impact of categories of satisfaction on overall satisfaction are personalization, connectivity, operation, reliability, ticketing, comfort, and information service in order of strength to weakness, while accessibility and safety have little effect on overall satisfaction. The result of cross-tabulation analysis quantitatively reflects the complex interrelationship between various indicators, and the subsequent improvement strategies is quantitatively analyzed by the IPA analysis for different indicators, concluding that the current operation frequency, baggage check-in, opening routes, and operation hours need to be improved, while the problems of transfer instructions, seat comfort, convenient ticket collection, fares, transfer quality, and information planning are over-improved.

Key words: transportation planning and management, satisfaction analysis, Bayesian network, air-rail integration, combination analysis

中图分类号: 

  • U15

图1

全文研究框架"

表1

个人信息板块频率统计表"

变量频率统计
性别1?男性(57.8%);2?女性(42.2%)
年龄1?18岁及以下(5.6%);2?19~29岁(46.5%);3?30~39岁(25.7%);4?40~49岁(16.4%);5?50岁以上(5.9%)
教育 水平1?高中、中专及以下(14.9%);2?大专及本科(57.6%); 3?硕士及以上(27.5%)
出行 距离

1?小于500 km(13.1%);2?500~1000 km(27.7%);

3?1000~1500 km(29.4%);4?大于1500 km(29.9%)

出行 成本

1?小于500元(19.6%);2?500~800元(21.6%);

3?800~1100元(22.5%);4?大于1100元(36.4%)

表2

ARIS服务感知数据基本统计"

变量(代号)均值排序
到达便利性(A3)1.801
到达时间成本(A1)1.922
*可达性满意度(A)2.323
*个性化满意度(P)2.884
到达经济成本(A2)3.405
航空餐食等(P3)3.406
*运营满意度(O)3.417
出发准点率(R2)3.568
行李托运(P1)3.609
托运安全性(F2)3.6710
补救服务(R1)3.7011
安检便利性(C1)3.7012
*信息服务满意度(I)3.7213
设施舒适性(S1)3.7614
运营时段(O2)3.7815
运营班次(O3)3.7816
枢纽安全性(F1)3.7917
开通线路数(O1)3.7918
*安全性满意度(F)3.8219
*衔接性满意度(C)3.8620
换乘效率(C2)3.8921
空调温度(S3)3.8922
人工服务(P2)3.9123
*舒适性满意度(S)3.9224
联程信息规划(I2)3.9225
票价(T3)3.9326
*可靠性满意度(R)3.9327
行程安全性(F3)3.9428
换乘质量(C3)3.9629
实时信息服务(I3)3.9830
*票务服务满意度(T)4.0031
取票便捷性(T2)4.0432
换乘指示(I1)4.0433
座椅舒适性(S2)4.0934
购票效率(T1)4.1035
到达准点率(R3)4.1536
**总体满意度(ALL)1.90-

图2

ARIS乘客感知满意度贝叶斯网"

表3

加权AUC值表"

代号加权AUC值代号加权AUC值
C0.969I1.000
R0.996S0.851
T0.914P0.990
F1.000O1.000
A1.000ALL0.745

图3

总体满意度敏感性分析"

图4

指标交叉分析"

图5

正影响和负影响IPA分析"

1 杨敏, 李宏伟, 任怡凤, 等. 基于旅客异质性画像的公铁联程出行方案推荐方法[J]. 清华大学学报: 自然科学版, 2022,62(7): 1-8.
Yang Min, Li Hong-Wei, Ren Yi-feng, et al. A method for recommending public-rail travel plans based on passenger heterogeneity portraits[J]. Journal of Tsinghua University(Natural Science Edition), 2022,62(7): 1-8.
2 Gundelfinger-Casar J, Coto-Millán P. Intermodal competition between high-speed rail and air transport in Spain[J]. Utilities Policy, 2017, 47: 12-17.
3 Köse S. Investigation of the effect of rail passenger transport on air passenger transport in intermodal transport: Samsun and Trabzon example[J]. Journal of Transportation and Logistics, 2021, 6(2): 149-162.
4 Chen Z. Impacts of high-speed rail on domestic air transportation in China[J]. Journal of Transport Geography, 2017, 62: 184-196.
5 Sato K, Chen Y. Analysis of high-speed rail and airline transport cooperation in presence of non-purchase option[J]. Journal of Modern Transportation, 2018, 26(4): 231-254.
6 Li X, Jiang C, Wang K, et al. Determinants of partnership levels in air-rail cooperation[J]. Journal of Air Transport Management, 2018, 71: 88-96.
7 Jiang C, D'Alfonso T, Wan Y. Air-rail cooperation: Partnership level, market structure and welfare implications[J]. Transportation Research Part B: Methodological, 2017, 104: 461-482.
8 Li Z, Sheng D. Forecasting passenger travel demand for air and high-speed rail integration service: A case study of Beijing-Guangzhou corridor, China[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 397-410.
9 Jiang Y, Yu S, Guan W, et al. Ground access behaviour of air-rail passengers: a case study of Dalian ARIS[J]. Travel Behaviour and Society, 2021, 24: 152-163.
10 杨敏,任怡凤,盛强,等. 基于随机森林算法的旅客空铁联运中转城市选择模型[J]. 东南大学学报:自然科学版, 2022, 52(1): 162-171.
Yang Min, Ren Yi-feng, Sheng Qiang, et al. A random forest algorithm-based passenger air-rail transit city selection model[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(1): 162-171.
11 Román C, Martín J C. Integration of HSR and air transport: Understanding passengers' preferences[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 71: 129-141.
12 Chen X, Lin L. The Integration of Air and Rail Technologies: Shanghai's Hongqiao integrated transport hub[J]. The Journal of Urban Technology, 2016, 23(2): 23-46.
13 Jiang Y, Timmermans H J P, Chen C, et al. Determinants of air-rail integration service of Shijiazhuang airport, China: analysis of historical data and stated preferences[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 1572-1587.
14 Yuan Y, Yang M, Feng T, et al. Heterogeneity in passenger satisfaction with air-rail integration services: Results of a finite mixture partial least squares model[J]. Transportation Research Part A: Policy and Practice, 2021, 147: 133-158.
15 Yuan Y, Yang M, Feng T, et al. Analyzing heterogeneity in passenger satisfaction, loyalty, and complaints with air-rail integrated services[J]. Transportation Research Part D: Transport and Environment, 2021, 97: No.102950.
16 Fu X, Fu X, Juan Z, et al. Understanding public transit use behavior: integration of the theory of planned behavior and the customer satisfaction theory[J]. Transportation(Dordrecht), 2017, 44(5): 1021-1042.
27 Luis Machado-Leon J, de Ona R, de Ona J. The role of involvement in regards to public transit riders' perceptions of the service[J]. Transport Policy, 2016, 48: 34-44.
18 de Oña R, Machado J L, de Oña J. Perceived service quality, customer satisfaction, and behavioral intentions[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2538(1): 76-85.
19 Li D, Miwa T, Morikawa T. Modeling time-of-day car use behavior: a Bayesian network approach[J]. Transportation Research Part D: Transport and Environment, 2016, 47: 54-66.
[1] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[2] 王殿海,胡佑薇,蔡正义,曾佳棋,姚文彬. 基于BPR函数的城市道路间断流动态路阻模型[J]. 吉林大学学报(工学版), 2023, 53(7): 1951-1961.
[3] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[4] 胡莹,邵春福,王书灵,蒋熙,孙海瑞. 基于共享单车骑行轨迹的骑行质量识别方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1040-1046.
[5] 王占中,蒋婷,张景海. 基于模糊双边界网络模型的道路运输效率评价[J]. 吉林大学学报(工学版), 2023, 53(2): 385-395.
[6] 秦严严,杨晓庆,王昊. 智能网联混合交通流CO2排放影响及改善方法[J]. 吉林大学学报(工学版), 2023, 53(1): 150-158.
[7] 王立平,朱斌,吴军,陶子寒. 基于贝叶斯网络的盘式刀库故障分析[J]. 吉林大学学报(工学版), 2022, 52(2): 280-287.
[8] 闫云娟,查伟雄,石俊刚,李剑. 具有随机充电需求的混合动态网络平衡模型[J]. 吉林大学学报(工学版), 2022, 52(1): 136-143.
[9] 李浩,陈浩. 考虑充电排队时间的电动汽车混合交通路网均衡[J]. 吉林大学学报(工学版), 2021, 51(5): 1684-1691.
[10] 户佐安,夏一鸣,蔡佳,薛锋. 延误条件下综合多种策略的城轨列车运行调整优化[J]. 吉林大学学报(工学版), 2021, 51(5): 1664-1672.
[11] 朱才华,孙晓黎,李岩. 站点分类下的城市公共自行车交通需求预测[J]. 吉林大学学报(工学版), 2021, 51(2): 531-540.
[12] 罗清玉,田万利,贾洪飞. 考虑通勤需求的电动汽车充电站选址与定容模型[J]. 吉林大学学报(工学版), 2019, 49(5): 1471-1477.
[13] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[14] 曹骞, 李君, 刘宇, 曲大为. 基于马尔科夫链的长春市乘用车行驶工况构建[J]. 吉林大学学报(工学版), 2018, 48(5): 1366-1373.
[15] 孙晓颖, 扈泽正, 杨锦鹏. 基于分层贝叶斯网络的车辆发动机系统电磁脉冲敏感度评估[J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!