吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1686-1694.doi: 10.13229/j.cnki.jdxbgxb.20230085
• 交通运输工程·土木工程 • 上一篇
Ya-na MAO1,2(),Shi-zhong LIU1,Jian XING3,Hua YANG3,Yu-bo JIAO3()
摘要:
为研究超高性能玻璃砂混凝土(UHPGC)与HRB600高强钢筋的粘结性能,分析了水胶比(0.17、0.19、0.21)、钢纤维体积掺量(1%、2%、3%)和玻璃砂替换率(0%、50%、100%)对UHPGC工作及力学性能的影响规律。通过中心拉拔试验并结合声发射实时监测明确了UHPGC-HRB600高强钢筋粘结性能变化规律。结果表明:掺入玻璃砂能提高UHPGC的抗压强度,其最佳替换度为50%;粘结强度与水胶比和钢纤维掺量呈正相关关系,且随着玻璃砂替换度的增大呈先增长后减小的规律;UHPGC和HRB600粘结滑移破坏形式主要分为劈裂破坏和劈拉破坏两种;声发射参数呈现良好的粘结滑移表征能力。
中图分类号:
1 | Arora A, Almujaddidi A, Kianmofrad F, et al. Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties[J]. Cement and Concrete Composites, 2019, 104: No. 103346. |
2 | 朱劲松, 秦亚婷, 刘周强.预应力 UHPC-NC 组合梁截面优化设计[J/OL].[2023-01-15]. |
3 | Soliman N A, Omran A F, Tagnit-Hamou A. Laboratory characterization and field application of novel ultra-high-performance glass concrete[J]. Aci Materials Journal, 2016, 113(3): 307-316. |
4 | Soliman N A, Tagnit-Hamou A. Development of ultra-high-performance concrete using glass powder – towards ecofriendly concrete[J]. Construction and Building Materials, 2016,125:600-612. |
5 | Soliman N A, Tagnit-Hamou A. Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap[J]. Construction and Building Materials, 2017,139:374-383. |
6 | Vaitkevicius V, Šerelis E, Hilbig H. The effect of glass powder on the microstructure of ultra high performance concrete[J]. Construction and Building Materials, 2014, 68: 102-109. |
7 | Jiao Y B, Zhang Y, Guo M, et al. Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material[J]. Journal of Cleaner Production, 2020, 277: No. 123501. |
8 | 邓宗才,袁常兴. 高强钢筋与活性粉末混凝土黏结性能的试验研究[J]. 土木工程学报, 2014, 47(3): 69-78. |
Deng Zong-cai, Yuan Chuang-xing. Experimental study on bond capability between high strength rebar and reactive powder concrete[J]. China Civil Engineering Journal, 2014, 47(3): 69-78. | |
9 | 黄政宇,岑小艳,柳红霞. 碳纤维筋与活性粉末混凝土粘结性能试验研究[J]. 铁道科学与工程学报, 2006(1): 65-69. |
Huang Zheng-yu, Cen Xiao-yan, Liu Hong-xia. Experimental research on the bond performance between CFRP bars and reactive powder concrete[J]. Journal of Railway Science and Engineering, 2006(1): 65-69. | |
10 | Choi E S, Lee J W, Kim S J, et al. A Study on the Bond Strength between High Performance Concrete and Reinforcing Bar[J]. Engineering, 2015, 7(7): 373-378. |
11 | Gallego A, Senavent-Climent A, Suarez E. Concrete-galvanized steel pull-out bond assessed by acoustic emission[J]. Journal of Materials in Civil Engineering, 2016, 28(2): 1543-1552. |
12 | Abouhussien A A, Hassan A A. Acoustic emission-based analysis of bond behavior of corroded reinforcement in existing concrete structures[J/OL]. [2023-01-02]. |
[1] | 卜建清,郭至博,张吉仁,荀敬川,黄晓明. 多损伤钢-混组合梁桥力学性能有限元分析方法[J]. 吉林大学学报(工学版), 2023, 53(6): 1621-1637. |
[2] | 韩智强,谢刚,周勇军,刘世忠,晋民杰. 曲线桥梁车桥耦合振动数值分析方法[J]. 吉林大学学报(工学版), 2023, 53(2): 515-522. |
[3] | 杨国俊,田骐玮,吕明航,杜永峰,唐光武,韩宗健,伏一多. 大跨度悬索桥隧道式锚碇力学特性研究综述[J]. 吉林大学学报(工学版), 2022, 52(6): 1245-1263. |
[4] | 袁周致远,吉伯海,夏俊元,孙童. 钢箱梁横隔板-纵肋疲劳裂纹气动冲击维修试验[J]. 吉林大学学报(工学版), 2022, 52(12): 2883-2891. |
[5] | 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635. |
[6] | 李春良,林志豪,赵珞珞. 铰缝及板损伤后对空心板桥横向受力的影响[J]. 吉林大学学报(工学版), 2021, 51(2): 611-619. |
[7] | 李碧雄,廖桥,章一萍,周练,隗萍,刘侃. 超高强钢筋工程用水泥基复合材料梁受弯计算理论[J]. 吉林大学学报(工学版), 2019, 49(4): 1153-1161. |
|