吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2358-2363.doi: 10.13229/j.cnki.jdxbgxb.20220748

• 计算机科学与技术 • 上一篇    

大规模物联网终端密文数据分段小波降噪算法仿真

曹守启1(),孔凡慧1,张铮1,熊如意2   

  1. 1.上海海洋大学 工程学院,上海 201306
    2.重庆交通职业学院 中德学院,重庆 402260
  • 收稿日期:2022-06-15 出版日期:2023-08-01 发布日期:2023-08-21
  • 作者简介:曹守启(1973-),男,教授,博士.研究方向:渔业物联网,智能化仪表.E-mail:cshouq20220606@163.com
  • 基金资助:
    十三五“蓝色粮仓科技创新”国家重点研发计划项目(2019YFD0900800)

Simulation of segmentation wavelet noise reduction algorithm for large⁃scale IoT terminal ciphertext data

Shou-qi CAO1(),Fan-hui KONG1,Zheng ZHANG1,Ru-yi XIONG2   

  1. 1.School of Engineering,Shanghai Ocean University,Shanghai 201306,China
    2.Sino-German School,Chongqing Vocational College of Transportation,Chongqing 402260,China
  • Received:2022-06-15 Online:2023-08-01 Published:2023-08-21

摘要:

为有效滤除终端密文数据中的噪声,提出一种大规模物联网终端密文数据分段小波降噪算法。采用周期图谱估计特征提取方法提取不同类型数据的连续谱分量和线谱分量,获取密文数据的噪声特征。通过噪声数据在尺度空间的最大投影构建能量匹配准则,采用结构化小波滤波器组建立与信号能量一致的最优能量匹配小波。并通过波形匹配准则,使用优化函数建立与信号波形相同的最优波形匹配小波,完成大规模物联网终端密文数据分段小波降噪处理。经实验测试结果表明:所提算法能有效降低数据降噪延时,同时能获取较满意的降噪效果。

关键词: 大规模物联网, 终端密文数据, 分段, 小波降噪

Abstract:

In order to effectively filter the noise in terminal ciphertext data, a segmentation wavelet noise reduction algorithm for large-scale IoT terminal ciphertext data is proposed. The continuous spectral components and line spectral components of different types of data are extracted by the periodogram estimation feature extraction method, and the noise features of the ciphertext data are obtained. The maximum projection of noise data in the scale space is used to construct the energy matching criterion, and the structured wavelet filter bank is used to establish the optimal energy matching wavelet consistent with the signal energy. Through the waveform matching criterion, the optimal waveform matching wavelet which is the same as the signal waveform is established by using the optimization function to complete the segmented wavelet de-noising of the ciphertext data of the large-scale IOT terminal. The experimental test results show that the proposed algorithm can effectively reduce the delay of data noise reduction, and can also obtain satisfactory noise reduction effect.

Key words: large-scale internet of things, terminal ciphertext data, segmentation, wavelet noise reduction

中图分类号: 

  • TM933

图1

小波阈值去噪流程图"

图2

最优波形匹配算法操作流程图"

图3

不同算法的大规模物联网终端密文数据分段小波降噪结果对比分析"

表1

不同算法的降噪时延结果对比"

测试组次降噪时延/ms
本文算法文献[3]算法文献[4]算法
10.2540.2640.271
20.2830.2990.300
30.3010.3150.334
40.3260.3340.359
50.3450.3580.376
60.3660.3700.389
1 崔少华,李素文,汪徐德.BP神经网络和SVD算法联合的地震数据去噪方法[J].电子测量与仪器学报,2020,34(2): 12-19.
Cui Shao-hua, Li Su-wen, Wang Xu-de.Joint de-noising method of seismic data via BP neural network and SVD algorithm[J].Journal of Electronic Measurement and Instrumentation, 2020, 34(2): 12-19.
2 王宁,殷长春,高玲琦,等. 基于曲波变换的航空电磁数据去噪方法研究[J].地球物理学报,2020,63(12):4592-4603.
Wang Ning, Yin Chang-chun, Gao Ling-qi, et al. Airborne EM denoising based on curvelet transform[J]. Chinese Journal of Geophysics, 2020, 63(12): 4592-4603.
3 靳萍,李红志,王磊.基于时频分析的感应传输CTD数据降噪方法研究[J].中国测试, 2021, 47(5): 24-32, 57.
Jin Ping, Li Hong-zhi, Wang Lei.Research of data denoising method for induction transmission CTD based on time-frequency analysis[J]. China Measurement & Testing Technology, 2021, 47(5): 24-32, 57.
4 朱甜甜,刘建,宋波,等.焊缝超声相控阵检测数据深度学习降噪方法[J].应用声学, 2022, 41(1): 112-118.
Zhu Tian-tian, Liu Jian, Song Bo, et al. Noise reduction method for weld PAUT detection data based on deep learning[J]. Journal of Applied Acoustics, 2022, 41(1): 112-118.
5 李俊,黄开明,帅晶.无线探空仪回波信号的变分模态分解与降噪研究[J].电子技术应用, 2020, 46(12):103-106, 110.
Li Jun, Huang Kai-ming, Jing Shuai. Study on variational mode decomposition and noise reduction of signal of radiosonde[J].Application of Electronic Technique, 2020, 46(12): 103-106, 110.
6 Tudor V, Gulisano V, Almgren M, et al. BES: differentially private event aggregation for large-scale IoT-based systems[J]. Future Generation Computer Systems, 2020, 108: 1241-1257.
7 罗宗誉,严华林.基于PCA-CLEAN的噪声稳健激光微多普勒特征提取方法[J].激光与红外,2020,50(11):1313-1321.
Luo Zong-yu, Yan Hua-lin. Noise robust laser micro-Doppler feature extraction method based on PCA-CLEAN[J]. Laser & Infrared, 2020,50(11): 1313-1321.
8 周运斌,陈茜,王颖,等.基于聚类算法和类噪声数据辨识的负荷模型特征参数提取[J].电工电能新技术,2020,39(12): 12-18.
Zhou Yun-bin, Chen Qian, Wang Ying, et al. Ambient signal and clustering algorithm based extraction for identified load model parameters[J]. Advanced Technology of Electrical Engineering and Energy, 2020,39(12):12-18.
9 张巍,李雨成,张欢,等.面向通风智能化的风速传感器结构化数据降噪方法对比[J].中国安全生产科学技术,2021,17(8): 70-76.
Zhang Wei, Li Yu-cheng, Zhang Huan, et al. Comparison of structured data noise reduction methods for airflow speed sensor of intelligent ventilation[J]. Journal of Safety Science and Technology, 2021,17(8): 70-76.
10 鲁铁定,谢建雄.变分模态分解结合样本熵的变形监测数据降噪[J].大地测量与地球动力学, 2021, 41(1): 1-6.
Lu Tie-ding, Xie Jian-xiong. Deformation monitoring data de-noising method based on variational mode decomposition combined with sample entropy[J]. Journal of Geodesy and Geodynamics, 2021, 41(1): 1-6.
11 李波,聂增丽,畅君元.嵌入式异构物联网密文数据动态捕获方法[J].计算机仿真,2021,38(2):282-286.
Li Bo, Nie Zeng-li, Chang Jun-yuan. Embedded heterogeneous internet of things ciphertext data dynamic capture method[J]. Computer Simulation, 2021,38(2): 282-286.
12 吴峻,王湘,宋蕾.动圈式永磁直线直流电机的精英保留多种群遗传优化算法[J].国防科技大学学报,2021,43(4): 76-84.
Wu Jun, Wang Xiang, Song Lei. Multi-population genetic optimization algorithm with elite retention for moving-armature permanent magnet linear direct current motor[J].Journal of National University of Defense Technology,2021,43(4): 76-84.
13 程龙,张方华.用于混合储能系统平抑功率波动的小波变换方法[J].电力自动化设备,2021,41(3):100-104, 128.
Cheng Long, Zhang Fang-hua. Wavelet transform method for hybrid energy storage system smoothing power fluctuation[J].Electric Power Automation Equipment,2021,41(3): 100-104, 128.
[1] 翟玲,崔旭. 基于分段估计和PageRank的文本信息相似性搜索算法[J]. 吉林大学学报(工学版), 2022, 52(4): 910-915.
[2] 王继新, 翟新婷, 毕野虹天, 李莺莺. 基于AIC-K-means的载荷分段混合分布估计[J]. 吉林大学学报(工学版), 2018, 48(4): 1092-1098.
[3] 万平, 吴超仲, 林英姿, 马晓凤. 基于驾驶行为多元时间序列特征的愤怒驾驶状态检测[J]. 吉林大学学报(工学版), 2017, 47(5): 1426-1435.
[4] 王培智, 田地, 龙涛, 李抵非, 邱春玲, 刘敦一. 用于TOF-SIMS的锆石样品图像自动聚焦算法[J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[5] 李义, 梁继才, 滕菲, 梁策, 于佳奇. 型材多点拉弯成形模具型面的分段补偿迭代方法[J]. 吉林大学学报(工学版), 2016, 46(6): 1961-1966.
[6] 刘寒冰, 时成林, 谭国金, 王华, 黄彬. 基于分段思想的变截面连续梁桥动力特性计算[J]. 吉林大学学报(工学版), 2015, 45(6): 1779-1783.
[7] 莫愁, 陈吉清, 兰凤崇. 逆子结构传递路径分析方法[J]. 吉林大学学报(工学版), 2015, 45(6): 1751-1756.
[8] 毕晓君,王珏,李博. 基于生物地理学优化的雷达正交波形设计算法[J]. 吉林大学学报(工学版), 2014, 44(3): 867-873.
[9] 曾文潇, 蒋同海, 李晓, 周俊林, 张荣辉, 汪焰恩. 基于分布式多分段区域检查机制的无线传感器网络传输过程仿真[J]. 吉林大学学报(工学版), 2014, 44(01): 246-252.
[10] 王秀刚, 刘玉梅, 苏建, 曹晓宁, 张益瑞. 转向架回转力矩测试及运动平台位姿解算[J]. 吉林大学学报(工学版), 2014, 44(01): 35-40.
[11] 程永春, 郭庆林, 谭国金. 沥青混合料黏弹性参数的改进识别 [J]. , 2012, (03): 629-633.
[12] 王新沛, 刘常春, 李远洋, 孙处然. 基于高阶香农熵的心音分段算法[J]. 吉林大学学报(工学版), 2010, 40(05): 1433-1437.
[13] 王宇航,姚郁,马克茂. 二阶扩张状态观测器的误差估计[J]. 吉林大学学报(工学版), 2010, 40(01): 143-0147.
[14] 岂兴明,朴英,矫津毅 . 高压涡轮叶顶间隙变化的数值分析[J]. 吉林大学学报(工学版), 2009, 39(01): 33-37.
[15] 张建雄;唐万生 . 一类不确定分段线性系统的优化控制[J]. 吉林大学学报(工学版), 2006, 36(06): 929-0933.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!