吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1153-1165.doi: 10.13229/j.cnki.jdxbgxb.20220687

• 农业工程·仿生工程 • 上一篇    

基于离散元的设施农业就地翻土犁的研究与试验

刘元义1(),于圣洁1,胥备1,王宪良1,宋发成2   

  1. 1.山东理工大学 农业工程与食品科学学院,山东 淄博 255000
    2.西安交通大学 机械制造系统国家重点实验室,西安 710054
  • 收稿日期:2022-06-02 出版日期:2024-04-01 发布日期:2024-05-17
  • 作者简介:刘元义(1963-),男,教授,博士. 研究方向:智能农机设计制造.E-mail:liuyy@sdut.edu.cn
  • 基金资助:
    2018年度山东省农机装备研发创新计划项目(2018YF005)

Experimental study on in-situ tilling plow in facility agriculture based on discrete element method

Yuan-yi LIU1(),Sheng-jie YU1,Bei XU1,Xian-liang WANG1,Fa-cheng SONG2   

  1. 1.College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
    2.State Key Laboratory for Manufacturing Systems Engineering, Xi′an jiaotong University, Xi′an 710054, China
  • Received:2022-06-02 Online:2024-04-01 Published:2024-05-17

摘要:

针对设施农业空间狭小,土壤病虫害严重,无法使用铧式犁深翻的问题,提出一种就地翻土解决办法。根据逆向工程得到就地翻土犁犁体逆向曲面,通过现有犁体成型原理,参照铧式犁犁体耕宽、耕深、犁体安装角、切土角、导曲线提升角、开度、犁体长度等参数,创设就地翻土犁犁体正向曲面;实测设施农业土壤相对湿度为34.57%、土壤堆积角为39°,通过EDEM软件中的接触参数数据库GEMM得到接触参数范围,标定土壤颗粒间表面能为4.19 J/m2、碰撞恢复系数为0.282、动摩擦因数为0.051、静摩擦因数为0.629,创设试验土槽;引入原沟落土率概念;构建原沟落土率与曲面参数间的相互作用模型,得到最佳原沟落土率曲面参数;利用Design-Expert软件进行分析,以原沟落土率为响应指标,使用Plackett-Burman试验设计方法开展多因素两水平显著性筛选试验,得到影响原沟落土率耕宽、犁铧安装角、切土角3个显著性因素;对3因素进行Box-Behnken试验设计,得到278.392 mm耕宽、40.522°犁铧安装角、23.211°切土角最佳设计参数。针对优化结果进行试验,得到试验结果与预测结果误差为3.13%,试验结果表明,所研究就地翻土犁可以达到就地翻垡的目的,并为解决设施农业内土壤深翻问题提供参考。

关键词: 农业工程, 就地翻土犁, 正交试验, 原沟落土率, 实物试验

Abstract:

In view of the problem that the arable plough could not be used for deep ploughing due to the narrow space of facility agriculture and the serious soil diseases and insect pests, a method of turning soil on the spot was put forward.Based on the reverse engineering, the reverse surface of the plough body of the local soil turning plough was obtained. Based on the existing forming principle of the plough body, the forward surface of the plough body of the share plough body was established by referring to the ploughing width, ploughing depth, installation angle of the plough body, soil cutting angle, guiding curve lifting angle, opening and length of the plough body.The soil relative humidity was 34.57% and the soil accumulation angle was 39°. The contact parameter range was obtained by GEMM, the contact parameter database of EDEM software. The surface energy between soil particles was 4.19 J/m2, the collision recovery coefficient was 0.282, the dynamic friction coefficient was 0.051, and the static friction coefficient was 0.629.The concept of soil fall rate in original gully was introduced. The interaction model between soil fall rate and surface parameters was established, and the optimal surface parameters of soil fall rate were obtained.Using Design-Expert software, plackett-Burman experimental design method was used to carry out multi-factor and two-level significance screening test with soil fall rate as the response index. Three significant factors affecting soil fall rate of the original ditch were obtained, namely, plow width, plowshare installation angle and soil cutting angle.Box-Behnken experimental design was carried out for the three factors, and the optimal design parameters of 278.392 mm plow width, 40.522°plow share installation angle and 23.211°soil cutting angle were obtained.Based on the optimized results, the error between the experimental results and the predicted results is 3.13%. The experimental results show that the tilling plow can achieve the aim of tilling in situ, and provide a reference for solving the problem of soil deep tilling in facility agriculture.

Key words: agricultural engineering, in-situ tilling plow, orthogonal test, soil falling rate of original ditch, physical test

中图分类号: 

  • S222.19

图1

测量过程及曲面成型过程"

图2

正向绘制及对比"

图3

就地翻土犁翻垡原理"

图4

含水率测定"

图5

堆积角标定试验"

图6

土壤堆积角仿真实验"

表1

土壤参数标定Box-behnken试验表"

因素-101
X1/(J·m-2468
X20.150.350.55
X30.050.0750.1
X40.320.741.16

表2

土壤堆积角试验设计方案"

序号X1/(J·m-2X2X3X4堆积角/(°)
180.550.0750.7433.70
260.350.0500.3242.64
340.550.0750.7422.80
480.350.1000.7466.17
540.350.1000.7442.00
640.150.0750.7453.00
740.350.0751.1636.65
860.350.0750.7448.77
940.350.0500.7428.98
1060.550.0751.1626.04
1160.150.0500.7448.73
1260.150.0751.1652.60
1340.350.0750.3237.98
1460.350.0750.7453.41
1580.150.0750.7449.95
1660.550.1000.7432.07
1780.350.0750.3260.47
1860.350.0750.7449.09
1960.150.1000.7454.17
2080.350.0751.1663.05
2160.350.0750.7454.13
2260.550.0500.7421.45
2360.350.1000.3259.16
2480.350.0500.7457.18
2560.350.0501.1642.43
2660.550.0750.3228.06
2760.350.0750.7449.10
2860.150.0750.3254.92
2960.350.1001.1652.56

表3

堆积角试验设计方差分析"

方差来源平方和自由度均方FP显著性
模型3977.0114284.0710.95<0.0001**
X1992.081992.0838.23<0.0001**
X21856.3011 856.3071.54<0.0001**
X3349.061348.0613.450.0025*
X48.1718.170.310.5836
X1X248.65148.651.870.1925
X1X34.0614.060.160.6984
X1X43.8213.820.150.7069
X2X36.7116.710.260.6191
X2X40.02310.0238.671E-0040.9769
X3X410.21110.210.390.5406
X125.3415.340.210.6571
X22676.451676.4526.070.0002*
X3213.75113.750.530.4787
X420.7010.700.0270.8719
残差363.261425.95
失拟项335.471033.554.830.0713
误差项27.7946.95
总和4340.2728

图7

堆积角仿真值"

图8

就地翻土犁侧视图"

图9

就地翻土犁俯视图"

图10

原沟落土率测量"

表4

犁体待确定参数取值范围"

因素编码低水平(-)高水平(+)
耕深/mmX1200250
耕作幅宽/mmX2228312
犁铧安装角/(°)X33545
切土角/(°)X42530
导曲线提升角/(°)X519.5229.06
开度/mmX6140190
犁体长度/mmX7525.6642.4

图11

犁体仿真实验"

表5

Plackett-Burman试验表"

序号X1/mmX2/mmX3/(°)X4/(°)X5/(°)X6/mmX7/mmX8/(km·h-1X9X10X11原沟落土率/%
1250312353029.06190525.64.5-11-180.67
2200312452529.06190642.44.5-1-1178.12
3250228453019.52190642.47-1-1-179.48
4200312353029.06140642.471-1-178.44
5200228452529.06190525.6711-181.69
6200228353019.52190642.44.511179.89
7250228352529.06140642.47-11181.20
8250312352519.52190525.671-1183.65
9250312452519.52140642.44.511-177.53
10200312453019.52140525.67-11173.45
11250228453029.06140525.64.51-1180.55
12200228352519.52140525.64.5-1-1-183.48

表6

Plackett-Burman试验设计各因素效应评价"

因素效应系数标准误差贡献值平方和是否显著
截距79.850.22
X11.340.670.226.265.35
X2-2.40-1.200.2220.3117.35
X3-2.75-1.380.2226.5822.72
X4-2.20-1.100.2216.9714.50
X50.530.270.220.990.85
X61.480.740.227.646.53
X7-1.47-0.740.227.606.50
X8-0.39-0.190.220.530.45
X90.890.450.222.792.39
X10-1.55-0.770.228.427.19
X11-0.74-0.370.221.911.64

表7

Box-Behnken优化范围取值"

因素-101
X1/mm240260280
X2/(°)384042
X3/(°)232527

表8

Box-Behnken试验表"

序号X1/mmX2/(°)X3/(°)原沟落土率%
1240382578.87
2280382580.21
3240422580.18
4280422580.52
5240402380.63
6280402380.87
7240402779.12
8280402780.21
9260382380.59
10260422381.75
11260382779.11
12260422780.14
13260402581.25
14260402581.17
15260402581.32
16260402580.91
17260402581.29

表9

Box-Behnken试验设计各因素效应评价"

方差来源平方和自由度均方FP显著性
模型10.8291.2031.04<0.0001**
X11.1311.1329.250.0010**
X21.8111.8146.870.0002**
X33.4613.4689.33<0.0001**
X1X20.2510.256.460.0386*
X1X30.1810.184.670.0676
X2X30.01310.0130.110.7508
X122.1612.1655.830.0001**
X221.1711.1730.150.0009**
X320.2910.297.580.0284*
残差0.2770.039
失拟项0.1630.0541.970.2602
误差项0.1140.027
总和11.0916

图12

试验因素对原沟落土率的影响的响应曲面"

图13

犁体试验"

1 宋卫堂.日光温室蔬菜生产全程机械化的一种解决方案[J].中国农机化学报,2018,39(9):26-29.
Song Wei-tang. A complete mechanization solution for greenhouse vegetable production[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 26-29.
2 付学谦,周亚中,孙宏斌,等.园区农业能源互联网:概念、特征与应用价值[J].农业工程学报,2020,36(12):152-161.
Fu Xue-qian, Zhou Ya-zhong, Sun Hong-bin,et al.Park-level agricultural energy internet:Concept, characteristic and application value[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(12):152-161.
3 骆飞,徐海斌,左志宇,等.我国设施农业发展现状、存在不足及对策[J].江苏农业科学,2020,48(10):57-62.
Luo Fei, Xu Hai-bin, Zuo Zhi-yu,et al.Current situation,deficiency and countermeasures of China's facility agriculture[J].Jiangsu Agricultural Sciences,2020,48(10):57-62.
4 刘霓红,蒋先平,程俊峰,等.国外有机设施园艺现状及对中国设施农业可持续发展的启示[J].农业工程学报,2018,34,42(15):1-9.
Liu Ni-hong, Jiang Xian-ping, Cheng Jun-feng,et al.Current situation of foreign organic greenhouse horticulture and its inspiration for sustainable development of Chinese protected agriculture[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34,342(15):1-9.
5 熊平原,杨洲,孙志全,等.基于离散元法的旋耕刀三向工作阻力仿真分析与试验[J].农业工程学报,2018, 345(18): 113-121.
Xiong Ping-yuan, Yang Zhou, Sun Zhi-quan,et al.Simulation analysis and experiment for three-axis working resistances of rotary blade based on discrete element method[J].Transactions of the Chinese Society of Agricultural Engineering,2018,345(18):113-121.
6 秦柳. 国外设施农业发展的经验与借鉴[J]. 世界农业, 2015, 436(8): 143-146.
Qin Liu.The development experience and reference of facility agriculture abroad[J].World Agriculture,2015,436(8): 143-146.
7 马廷玺.土垡原地翻转横排犁[J].粮油加工与食品机械,1978(11): 49-51.
Ma Ting-xi.Horizontal plow of in-situ tilling soil[J].Cereals and Oils Processing,1978(11): 49-51.
8 Caky H B A, 王梦熊.几种类型的正面犁[J].粮油加工与食品机械, 1984(12): 30-32.
Caky H B A, Wang Meng-xiong.Several types of horizontal plows[J].Cereals and Oils Processing,1984(12): 30-32.
9 尤玉锴,陈伊文.对横排犁研究中几个问题的探讨[J].农业机械学报,1987(3):99-101.
You Yu-kai, Chen Yi-wen.The research and discussion of several problem about horizontal plow[J].Transactions of the Chinese Society for Agricultural Machinery,1987(3):99-101.
10 尤玉锴,刘明亮,白立群.横排犁犁面设计初探[J].农机化研究,1987(2):12-17.
You Yu-kai, Liu Ming-liang, Bai Li-qun.Preliminary study on the design of horizontal plow surface[J].Journal of Agricultural Mechanization Research,1987(3):12-17.
11 Junichi K, Wang Shi-xue. Study on a plow to invert furrow slice at the same position (Part 1)[J].Journal of JSAM, 1993, 55(3):15-22.
12 Wang Shi-xue, Junichi K. Study on a plow to invert furrow slice at the same position (Part 2)[J]. Journal of JSAM, 1993, 55(4):33-39.
13 Wang Shi-xue, Junichi K. Study on a plow to invert furrow slice at the same position (Patr 3)[J]. Journal of JSAM, 1995, 57(5):31-40.
14 宋发成,刘元义,邴坤,等.基于TRIZ理论的就地翻土犁设计[J].中国农机化学报,2019,40(4):13-18.
Song Fa-cheng, Liu Yuan-yi, Bing Kun,et al.Design of in-situ tilling plow based on TRIZ theory[J].Journal of Chinese Agricultural Mechanization,2019,40(4):13-18.
15 于圣洁,刘元义,胥备,等.设施农业就地翻土犁结构设计与仿真[J].中国农机化学报,2021,42(3):66-71.
Yu Sheng-jie, Liu Yuan-yi, Xu Bei,et al.Design and simulation of in - situ tilling plow in facility agriculture[J].Journal of Chinese Agricultural Mechanization,2021,42(3):66-71.
16 杨继鑫,戴华伟,王英俊,等.淄博烟区土壤中微量元素特征及重金属风险评价[J].中国烟草科学,2020,41(6):44-50.
Yang Ji-xin, Dai Hua-wei, Wang Ying-jun,et al. Distribution characteristics of medium and trace elements and risk assessments for heavy metals in soils in Zibo tobacco-planting region[J].Chinese Tobacco Science,2020,41(6):44-50.
17 魏建林,谭德水,宋效宗,等.鲁中典型种植区设施番茄养分供需特征研究[J].山东农业科学,2020,52(11):15-19, 45.
Wei Jian-lin, Tan De-shui, Song Xiao-zong,et al.Nutrient supply and demand characteristics of greenhouse tomato in typical planting area of central Shandong Province[J].Shandong Agricultural Sciences,2020,52(11):15-19, 45.
18 刁海忠,杨小三,李文全,等.桓台县土壤地球化学背景值及分区特征[J].山东国土资源,2021,37(4):41-47.
Diao Hai-zhong, Yang Xiao-san, Li Wen-quan,et al.Geochemical background values of soil and characteristics of geochemical divisions in Huantai County[J].Shandong Land and Resources,2021,37(4):41-47.
19 郑侃,何进,李洪文,等.基于离散元深松土壤模型的折线破土刃深松铲研究[J].农业机械学报,2016,47(9):62-72.
Zheng Kan, He Jin, Li Hong-wen,et al.Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):62-72.
20 刘俊安. 基于离散元方法的深松铲参数优化及松土综合效应研究[D].北京:中国农业大学工学院,2018.
Liu Jun-an.Study on subsoiler parameters optimization and comprehensive effect of subsoiling based on the discrete element method[D].Beijing:College of Engineering, China Agricultural University,2018.
21 Aikins Kojo Atta, Mustafa Ucgul, Barr James B,et al. Determination of discrete element model parameters for a cohesive soil and validation through narrow point opener performance analysis[J]. Soil & Tillage Research, 2021, 213: No.105123.
22 李金展,马军涛,郑喜平.热处理工艺对65Mn犁铧力学性能的影响[J].热加工工艺,2017,46(4):215-217.
Li Jin-zhan, Ma Jun-tao, Zheng Xi-ping.Effect of heat treatment process on mechanical properties of 65 Mn ploughshare[J].Hot Working Technology,2017,46(4):215-217.
23 成大先.机械设计手册.单行本[M].北京:化学工业出版社,2004:5-7.
24 张喜瑞,曾望强,刘俊孝,等.基于离散元法的砖红壤斜柄折翼式深松铲设计与试验[J].农业机械学报,2022,53(3):40-49.
Zhang Xi-rui, Zeng Wang-qiang, Liu Jun-xiao,et al.Design and experiment of iateritic soil inclined handle folding wing subsoiling shovel based on discrete element method[J].Transactions of the Chinese Society for Agricultural Machinery,2022,53(3):40-49.
25 李宝筏.农业机械学[M].北京:中国农业出版社,2016:321-322.
26 习慧梅.温室大棚设施菜地土壤改良技术[J].农村实用技术,2016(3):28-31.
Xi Hui-mei.Soil improvement techniques in greenhouses[J].Practical Technologies of Rural Areas,2016(3):28-31.
27 赵江涛,崔方,张小平,等.设施农业土壤改良浅谈[J].西北园艺(综合),2021(1):36-37.
Zhao Jiang-tao, Cui Fang, Zhang Xiao-ping,et al.Description of soil improvement in facility agriculture[J].Northwest Horticulture,2021(1):36-37.
28 中国农业机械化科学研究院.农业机械设计手册[M].北京:中国农业科学技术出版社,2007.
29 李光聚,刘天英,李秀欣,等.寿光日光温室的发展历程及创新点[J].中国蔬菜,2019(10):14-18.
Li Guang-ju, Liu Tian-ying, Li Xiu-xin,et al.The development history and innovation points of Shouguang solar greenhouse[J].China Vegetables,2019(10):14-18.
30 康建. 日光温室深旋机设计与试验研究[D].沈阳:沈阳农业大学工程学院,2020.
Kang Jian.Design and experimental study of deep rotary machine in solar greenhouse[D].Shenyang:College of Engineering, Shenyang Agricultural University,2020.
31 刘静,孙闫.设施大棚履带电动拖拉机电源系统仿真研究[J].机械工程师,2021(2):59-62.
Liu Jing, Sun Yan.Simulation study on power supply system of a crawler electric tractor for greenhouses[J].Mechanical Engineer,2021(2):59-62.
32 翟力欣,姬长英,丁启朔,等.犁体结构参数与工作参数优化设计[J].农业机械学报,2013,44(8):57-62.
Zhai Li-xin, Ji Chang-ying, Ding Qi-shuo,et al.Optimized design of plough body structural and working parameters[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(8):57-62.
33 郑乐,罗锡文,曾山,等.水稻根茬-土壤复合体剪切特性试验[J].农业机械学报,2017,48(5):63-71.
Zheng Le, Luo Xi-wen, Zeng Shan,et al.Shear characteristics of rice root-soil composite[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(5):63-71.
34 葛宜元.试验设计方法与Design-Expert软件应用[M].哈尔滨:哈尔滨工业大学出版社,2014.
[1] 张延安,杜岳峰,孟青峰,栗晓宇,刘磊,朱忠祥. 基于改进遗传算法的湿式离合器压力自适应控制[J]. 吉林大学学报(工学版), 2024, 54(3): 852-864.
[2] 陈学深,熊悦淞,程楠,马旭,齐龙. 自适应振动式稻田株间柔性机械除草性能试验[J]. 吉林大学学报(工学版), 2024, 54(2): 375-384.
[3] 李义,吕晨阳,梁继才,梁策. 不规则Y形铝型材多点拉弯成形截面变形分析[J]. 吉林大学学报(工学版), 2024, 54(1): 105-113.
[4] 王永烁,康建明,彭强吉,陈英凯,方会敏,牛萌萌,王少伟. 果树株间避障除草机设计与试验[J]. 吉林大学学报(工学版), 2023, 53(8): 2410-2420.
[5] 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429.
[6] 吕锋,李念,冯壮壮,张杨航. 面向用户的个性化产品服务系统协同过滤推介方法[J]. 吉林大学学报(工学版), 2023, 53(7): 1935-1942.
[7] 耿端阳,孙延成,王宗源,王其欢,明家锐,杨昊霖,徐海港. 玉米籽粒直收机板齿式脱粒装置设计与试验[J]. 吉林大学学报(工学版), 2023, 53(11): 3281-3292.
[8] 谢守勇,张小亮,刘凡一,刘军,苑晓亮,刘伟,王鹏. 基于钵苗力学特性取投苗装置动力学分析与试验[J]. 吉林大学学报(工学版), 2023, 53(11): 3293-3304.
[9] 王斌,何丙辉,林娜,王伟,李天阳. 基于随机森林特征选择的茶园遥感提取[J]. 吉林大学学报(工学版), 2022, 52(7): 1719-1732.
[10] 耿端阳,孙延成,牟孝栋,张国栋,姜慧新,朱俊科. 基于差速辊的青贮玉米籽粒破碎仿真试验及优化[J]. 吉林大学学报(工学版), 2022, 52(3): 693-702.
[11] 温昌凯,谢斌,宋正河,韩建刚,杨倩雯. 拖拉机耐久性加速结构试验设计方法[J]. 吉林大学学报(工学版), 2022, 52(3): 703-715.
[12] 李建平,边永亮,杨欣,王鹏飞,李昕昊,薛春林. 果园多风机风送喷雾机作业参数优化与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2474-2485.
[13] 王国伟,朱庆辉,于海业,黄东岩. 基于数字化农机装备的青贮饲料可追溯系统[J]. 吉林大学学报(工学版), 2022, 52(1): 242-252.
[14] 耿端阳,牟孝栋,张国栋,王宗源,朱俊科,徐海刚. 小麦联合收获机清选机理分析与优化试验[J]. 吉林大学学报(工学版), 2022, 52(1): 219-230.
[15] 梁方,王德成,尤泳,王光辉,王宇兵,张晓明,冯金奎. 草地切根施肥补播复式改良机设计与试验[J]. 吉林大学学报(工学版), 2022, 52(1): 231-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!