吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 947-958.doi: 10.13229/j.cnki.jdxbgxb.20220630

• 交通运输工程·土木工程 • 上一篇    下一篇

考虑汽车队列动态特性的混合交通流特性

杨秀建(),贾晓寒,张生斌   

  1. 昆明理工大学 交通工程学院,昆明 650500
  • 收稿日期:2022-05-23 出版日期:2024-04-01 发布日期:2024-05-17
  • 作者简介:杨秀建(1980-),男,教授,博士.研究方向:智能车辆与智能交通技术. E-mail:yangxiujian2013@163.com
  • 基金资助:
    国家自然科学基金项目(52162046)

Characteristics of mixed traffic flow taking account effect of dynamics of vehicular platoon

Xiu-jian YANG(),Xiao-han JIA,Sheng-bin ZHANG   

  1. Faculty of Transportation Engineering,Kunming University of Science and Technology,Kunming 650500,China
  • Received:2022-05-23 Online:2024-04-01 Published:2024-05-17

摘要:

针对自主汽车队列与人工驾驶车辆混合的交通流问题,考虑汽车队列自身固有的动力学特性及其与交通流的耦合作用,研究了汽车队列固有动态特性的混合交通流特性。首先建立了自主汽车队列慢化概率与队列车辆的车头时距以及队列规模之间的关系模型,然后搭建了开放边界条件下汽车队列和人工驾驶车辆混合的元胞自动机交通流模型,最后进行了仿真分析。仿真结果表明,本文所建立的考虑汽车队列动态特性的混合交通流元胞自动机模型,揭示了现有模型无法反映的一些特殊的混合交通流特性;考虑汽车队列动态特性的混合交通流量会显著受到队列车头时距、队列规模等队列特征的影响,并且呈现出一定的非线性影响关系;车头时距和队列规模对混合交通流量的不利和有利影响同时存在,扩大队列规模和提高渗透率可显著改善混合交通流的流量特性,显著提升高车流密度下的道路通行能力。

关键词: 交通运输规划与管理, 智能交通, 汽车队列, 元胞自动机, 混合交通流

Abstract:

Focusing on the issue of mixed traffic flow composed of autonomous vehicular platoons and human-driven vehicles, and considering the inherent dynamics of vehicular platoon and the coupling with traffic flow, this work aims to investigate the property of mixed traffic flow when accounting for the actual dynamics of vehicular platoon. A model describing the relationship between the randomization probability of platoon and the variables dominating platoon dynamics including time headway and platoon size is proposed. Then a cellular automata (CA) mixed traffic flow model mixed with vehicular platoon and human-driven vehicles under open boundary condition is established. It is demonstrated from numerical simulations that the new model taking account the platoon inherent dynamics presented in this work, can reveal more particular phenomena of mixed traffic flow which cannot be reflected by the existing models. The characteristics of mixed traffic flow when considering the inherent dynamics of vehicular platoon is generally considerably affected by the typical features of platoon such as time headway, platoon size. Also, with the variations of vehicle density, more complex or even nonlinear relationship phenomenon has been observed. Generally, the effects of time headway and platoon size on mixed traffic flow are twofold, and increasing platoon penetration and platoon size can obviously improve the property of mixed traffic flow, and this advantage is more obvious in relatively high vehicle density scenarios to enhance the travelling capability.

Key words: transportation planning and management, intelligent transportation, vehicular platoon, cellular automata, mixed traffic flow

中图分类号: 

  • U491.112

图1

队列慢化概率特性"

图2

混合交通流系统示意图"

图3

跟驰模型框架"

图4

车辆占用元胞示意图"

图5

发车模型"

表1

仿真参数值"

参 数取值
道路长度L/m1 000
队列慢化影响强度指数p0.6
队列慢化影响强度指数q0.6
冒险参数 r0.3
人工驾驶车辆的反应时间/ s2
自主汽车队列的反应时间/s1

图6

混合交通流流量-密度散点图(h=0.5 s,λ=0.5)"

图7

两种建模方法的流量-密度特性比较"

图8

两种建模方法的时空图比较"

图9

车队车头时距和渗透率对流量-密度特性的影响分析"

图10

队列车头时距和渗透率对峰值流量的影响统计"

图11

车头时距和队列渗透率对时空演化过程的影响"

图12

队列规模对流量-密度特性的影响"

图13

队列规模对交通流速度的影响"

1 Zhu L, Tang Y, Yang D. Cellular automata based modeling and simulation of the mixed traffic flow of vehicle platoon and normal vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2021, 584(8): No.126368.
2 张毅,姚丹亚,李力, 等.智能车路协同系统关键技术与应用[J].交通运输系统工程与信息,2021, 21(5):40-51.
Zhang Yi, Yao Dan-ya, Li Li, et al.Technologies and applications for intelligent vehicle-infrastructure cooperation systems[J].Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51.
3 Chowdhury D, Wolf D E, Schreckenberg G M. Particle hopping models for two-lane traffic with two kinds of vehicles: effects of lane-changing rules[J]. Physica A: Statistical Mechanics & Its Applications, 1997, 235(3,4): 417-439.
4 敬明, 邓卫, 季彦婕, 等. 更新步长和元胞尺寸对元胞自动机模型的影响[J]. 吉林大学学报:工学版,2013, 43(2):310-316.
Jing Ming, Deng Wei, Ji Yan-jie, et al. Effects of update step size and cell size on cellular automata model[J]. Journal of Jilin University(Engineering Edition),2013, 43(2): 310-316.
5 邱小平, 于丹, 孙若晓, 等.基于安全距离的元胞自动机交通流模型研究[J].交通运输系统工程与信息, 2015, 15(2):54-60.
Qiu Xiao-ping, Yu Dan, Sun Ruo-xiao, et al. Research on cellular automata traffic flow model based on safe distance[J]. Transportation System Engineering and Information, 2015, 15 (2): 54-60.
6 董长印, 王昊, 王炜, 等. 混入智能车的下匝道瓶颈路段交通流建模与仿真分析[J]. 物理学报, 2018, 67(14): 179-193.
Dong Chang-yin, Wang Hao, Wang Wei, et al. Hybrid traffic flow model for intelligent vehicles exiting to off-ramp[J]. Acta Physica Sinica, 2018, 67(14): 179-193.
7 Vranken T, Sliwa B, Wietfeld C, et al. Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2021, 570(1): No.125792.
8 Zhou J Z, Zhu F. Analytical analysis of the effect of maximum platoon size of connected and automated vehicles[J]. Transportation Research Part C(Emerging Technologies), 2021,122: No.102882
9 Seiler P, Pant A, Hedrick.K Disturbance propagation in vehicle strings[J]. IEEE Transactions on Automatic Control, 2004, 49(10): 1835-1841.
10 Loannou P A, Chien C C. Autonomous intelligent cruise control[J]. IEEE Transactions on Vehicular Technology, 1993, 42: 657-672.
11 叶冬. 基于元胞自动机的交通流模型研究[D]. 西安:长安大学电子与控制工程学院,2014.
Ye Dong. Study on the model of traffic flow based on cellular automata theory[D]. Xi´an:College of Electronic and Control Engineering, Chang´an University, 2014.
12 邱小平, 马丽娜, 周小霞, 等. 基于安全距离的手动—自动驾驶混合交通流研究[J]. 交通运输系统工程与信息, 2016, 16(4):101-108.
Qiu Xiao-ping, Ma Li-na, Zhou Xiao-xia, et al.The mixed traffic flow of manual-automated driving based on safety distance[J]. Transportation System Engineering and Information, 2016, 16(4): 101-108.
13 王祺,谢娜,侯德藻, 等.自适应巡航及协同式巡航对交通流的影响分析[J].中国公路学报, 2019, 32(6): 188-197, 205.
Wang Qi, Xie Na, Hou De-zao, et al.Effects of adaptive cruise control and cooperative adaptive cruise control on traffic flow[J].China Journal of Highway and Transport, 2019, 32(6): 188-197, 205.
[1] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[2] 张卫华,刘嘉茗,解立鹏,丁恒. 网联混合环境快速路交织区自动驾驶车辆换道模型[J]. 吉林大学学报(工学版), 2024, 54(2): 469-477.
[3] 宋成举,贾洪飞,秦昊溥. 网联车混入条件下混合交通流跟驰稳定性[J]. 吉林大学学报(工学版), 2024, 54(2): 419-426.
[4] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[5] 王殿海,胡佑薇,蔡正义,曾佳棋,姚文彬. 基于BPR函数的城市道路间断流动态路阻模型[J]. 吉林大学学报(工学版), 2023, 53(7): 1951-1961.
[6] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[7] 胡莹,邵春福,王书灵,蒋熙,孙海瑞. 基于共享单车骑行轨迹的骑行质量识别方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1040-1046.
[8] 罗瑞发,郝慧君,徐桃让,顾秋凡. 考虑智能网联车队强度的混合交通流基本图模型[J]. 吉林大学学报(工学版), 2023, 53(2): 405-412.
[9] 王占中,蒋婷,张景海. 基于模糊双边界网络模型的道路运输效率评价[J]. 吉林大学学报(工学版), 2023, 53(2): 385-395.
[10] 高海龙,徐一博,侯德藻,王雪松. 基于深度异步残差网络的路网短时交通流预测算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3458-3464.
[11] 杨敏,张聪伟,李大韦,马晨翔. 基于贝叶斯网的空铁联程乘客出行满意度模型[J]. 吉林大学学报(工学版), 2023, 53(10): 2839-2846.
[12] 秦严严,杨晓庆,王昊. 智能网联混合交通流CO2排放影响及改善方法[J]. 吉林大学学报(工学版), 2023, 53(1): 150-158.
[13] 高明华,杨璨. 基于改进卷积神经网络的交通目标检测方法[J]. 吉林大学学报(工学版), 2022, 52(6): 1353-1361.
[14] 邝先验,陈自如. 基于CA的无信号灯控制路段行人过街横道处动态博弈礼让行为[J]. 吉林大学学报(工学版), 2022, 52(4): 837-846.
[15] 闫云娟,查伟雄,石俊刚,李剑. 具有随机充电需求的混合动态网络平衡模型[J]. 吉林大学学报(工学版), 2022, 52(1): 136-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!