吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (4): 1007-1015.doi: 10.13229/j.cnki.jdxbgxb.20220721

• 交通运输工程·土木工程 •    

基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估

刘一凡(),缪志伟(),申晨,耿祥东   

  1. 东南大学 土木工程学院,南京 211189
  • 收稿日期:2022-06-09 出版日期:2024-04-01 发布日期:2024-05-17
  • 通讯作者: 缪志伟 E-mail:230208109@seu.edu.cn;miaozhiwei@seu.edu.cn
  • 作者简介:刘一凡(1993-),男,博士研究生. 研究方向:钢筋混凝土结构耐久性.E-mail: 230208109@seu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFD1100402)

Evaluation of mechanical properties of non-uniform corroded rebars based on Monte Carlo method

Yi-fan LIU(),Zhi-wei MIAO(),Chen SHEN,Xiang-dong GENG   

  1. School of Civil Engineering,Southeast University,Nanjing 211189,China
  • Received:2022-06-09 Online:2024-04-01 Published:2024-05-17
  • Contact: Zhi-wei MIAO E-mail:230208109@seu.edu.cn;miaozhiwei@seu.edu.cn

摘要:

本文基于符合锈蚀钢筋形貌特征的截面积概率分布函数,并考虑锈坑处相邻截面的相关性,建立了不均匀锈蚀钢筋的三维有限元模型,通过蒙特卡罗模拟批量开展数值拉伸试验,定量研究不同锈蚀率下钢筋力学性能的退化情况。与已有的试验结论对比显示,该方法能较好地估计锈蚀钢筋的力学性能,尤其是钢筋的变形能力。本文研究了锈蚀钢筋不同本构和标距长度对力学性能的影响,结果表明:钢筋的强屈比是影响其变形能力的主要因素,不同的标距长度将会显著影响锈蚀钢筋极限应变的计算结果。

关键词: 结构工程, 蒙特卡罗法, 不均匀锈蚀, 有限元模型, 力学性能

Abstract:

To enable a reliable analysis of the residual behavior of corroded rebars, a computationally-efficient method capable of considering the corrosion morphology characteristics was proposed by the probability distribution function of the cross-section area. The degraded mechanical properties of rebars under different corrosion rates were quantitatively studied based on the combination of Monte Carlo method and numerical tensile tests of corroded rebars. This method can accurately estimate the mechanical properties of corroded rebars verified with previous test results, especially for the deformation capacity. The effects of constitutive laws and gauge lengths were analyzed respectively. The results show that the strength yield ratio of rebars is the dominant issue governing deformation capacity after being corroded, and different gauge lengths are responsible for the different calculation results of the ultimate strain of corroded rebars.

Key words: structural engineering, Monte Carlo method, non-uniform corrosion, finite element model, mechanical properties

中图分类号: 

  • TU375

图1

不同锈坑形状的开槽钢筋应力-应变关系"

图2

不均匀锈蚀钢筋模型示意图"

图3

修正后的有限元模型"

图4

不同锈蚀率下锈蚀钢筋样本荷载-位移曲线"

表1

40%锈蚀率下不同样本数量的钢筋平均力学性能"

样本数量屈服应力/MPa极限应力/MPa极限应变/ε
50185.1253.60.0825
100184.8253.80.0864
200184.7253.80.0870

图5

锈蚀钢筋力学性能退化曲线"

图6

钢筋实际屈服应力、实际极限应力与平均锈蚀率曲线"

图7

3种不同钢筋材料本构"

表2

cr1、cr2、cr3钢筋的极限位移退化率"

材料本构40%锈蚀率钢筋极限位移/mm未锈蚀钢筋极限位移/mm极限位移退化率/%
cr10.782.569
cr21.362.546
cr32.785.549

图8

不同强屈比钢筋归一化极限应变"

图9

不同标距长度下锈蚀钢筋极限应变退化规律"

图10

不同长度钢筋极限状态应变云图"

图11

不同锈蚀长度钢筋的极限应变退化曲线"

1 李志国, 刘成义, 林陈安攀, 等. 氯盐环境下混凝土中钢筋锈蚀性能试验[J].天津大学学报:自然科学与工程技术版, 2015, 48(3):219-224.
Li Zhi-guo, Liu Cheng-yi, An-pan Lin-Chen, et al. Experiment on anti-corrosion property of steel in chloride concrete[J]. Journal of Tianjin University(Science and Technology), 2015, 48(3):219-224.
2 戴理朝,周亮,杨晓文,等.基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报:工学版, 2023,53(10):2886-2896.
Dai Li-zhao, Zhou Liang, Yang Xiao-wen, et al. Meso-scale numerical simulation of interfacial bond behavior of corroded RC beams based on Connector element[J]. Journal of Jilin University(Engineering and Technology Edition), 2023,53(10):2886-2896.
3 Kordtabar B, Dehestani M. Effect of corrosion in reinforced concrete frame components on pushover behavior and ductility of frame[J]. Structural Concrete, 2021, 22: 5-23.
4 Ou Y C, Susanto Y T T, Roh H. Tensile behavior of naturally and artificially corroded steel bars[J]. Construction and Building Materials, 2016, 103: 93-104.
5 张伟平, 商登峰, 顾祥林. 锈蚀钢筋应力-应变关系研究[J]. 同济大学学报:自然科学版, 2006,34(5): 586-592.
Zhang Wei-ping, Shang Deng-feng, Gu Xiang-lin. Stress-strain relationship of corroded steel bars[J]. Journal of Tongji University(Natural Science), 2006,34(5): 586-592.
6 Imperatore S, Rinaldi Z, Drago C. Degradation relationships for the mechanical properties of corroded steel rebars[J]. Construction and Building Materials, 2017, 148: 219-230.
7 Zhu W J, Francois R, Poon C S, et al. Influences of corrosion degree and corrosion morphology on the ductility of steel reinforcement[J]. Construction and Building Materials, 2017, 148: 297-306.
8 Sun X Y, Kong H T, Wang H L, et al. Evaluation of corrosion characteristics and corrosion effects on the mechanical properties of reinforcing steel bars based on three-dimensional scanning[J]. Corrosion Science, 2018, 142: 284-294.
9 Fernandez I, Bairán J M, Marí A R. 3D FEM model development from 3D optical measurement technique applied to corroded steel bars[J]. Construction and Building Materials, 2016, 124: 519-532.
10 李亚辉, 郑山锁, 董立国, 等. 非均匀锈蚀钢筋拉伸性能试验与模拟[J]. 建筑材料学报, 2022,25(9):991-998.
Li Ya-hui, Zheng Shan-suo, Dong Li-guo, et al. Tensile properties test and simulation of non-uniform corroded reinforcement[J]. Journal of Building Materials, 2022,25(9):991-998.
11 Cairns J, Plizzari G A, Du Y G, et al. Mechanical properties of corrosion-damaged reinforcement[J]. Aci Materials Journal, 2005, 102: 256-264.
12 Torres-Acosta A, Martinez-Madrid M. Residual life of corroding reinforced concrete structures in marine environment[J]. Journal of Materials in Civil Engineering, 2003, 15: 344-353.
13 张伟平, 李崇凯, 顾祥林, 等.锈蚀钢筋的随机本构关系[J].建筑材料学报, 2014, 17(5): 920-926.
Zhang Wei-ping, Li Chong-kai, Gu Xiang-lin, et al. Stochastic model of constitutive relationship for corroded steel bars[J]. Journal of Building Materials, 2014, 17(5): 920-926.
14 金南国, 何家豪, 付传清, 等. 钢筋加速非均匀锈蚀试验方法和锈蚀形态研究[J]. 浙江大学学报:工学版, 2020, 54(3): 483-490.
Jin Nan-guo, He Jia-hao, Fu Chuan-qing, et al. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars[J]. Journal of Zhejiang University(Engineering Science), 2020, 54(3): 483-490.
15 Kashani M M, Crewe A J, Alexander N A. Use of a 3D optical measurement technique for stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion[J]. Corrosion Science, 2013, 73: 208-221.
16 Hui Y L, Lin Z S, Li R. Experimental study and analysis on the property of corroded rebar[J]. Industrial Construction, 1997, 27(6): 10-13.
17 罗小勇, 刘晋宏, 聂经纶. 锈蚀钢筋截面分布特征及轴向拉伸力学性能[J]. 建筑材料学报, 2019, 22(5): 730-736.
Luo Xiao-yong, Liu Jin-hong, Nie Jing-lun. Cross-section distribution characteristics and tensile behavior of corroded reinforcing steel bars[J]. Journal of Building Materials, 2019, 22(5): 730-736.
18 Francois R, Khan I, Dang V H. Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams[J]. Materials and Structures, 2013, 46: 899-910.
19 Li D W, Xiong C, Huang T, et al. A simplified constitutive model for corroded steel bars[J]. Construction and Building Materials, 2018, 186: 11-19.
20 Gu X L, Guo H Y, Zhou B B, et al. Corrosion non-uniformity of steel bars and reliability of corroded RC beams[J]. Engineering Structures, 2018, 167: 188-202.
21 Zhang J Z, Huang J, Fu C Q, et al. Characterization of steel reinforcement corrosion in concrete using 3D laser scanning techniques[J]. Construction and Building Materials, 2021, 270: 1-16.
22 Wang X G, Zhang W P, Gu X L, et al. Determination of residual cross-sectional areas of corroded bars in reinforced concrete structures using easy-to-measure variables[J]. Construction and Building Materials, 2013, 38: 846-853.
23 中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分: 室温试验方法 [S]. 北京: 中国标准出版社, 2010.
24 Zhao Y X, Xu X Y, Wang Y Z, et al. Characteristics of pitting corrosion in an existing reinforced concrete beam exposed to marine environment[J]. Construction and Building Materials, 2020, 234: 1-12.
25 Stewart M G. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams[J]. Structural Safety, 2009, 31: 19-30.
26 中华人民共和国住房和城乡建设部. 混凝土结构设计规范 [S]. 北京: 中国建筑工业出版社, 2017.
[1] 樊学平,周衡,刘月飞. 基于Gaussian Copula-贝叶斯动态模型的桥梁构件时变可靠性分析[J]. 吉林大学学报(工学版), 2024, 54(2): 485-493.
[2] 范亮,徐英铭,谭阳. 集束群钉式装配组合梁界面滑移计算[J]. 吉林大学学报(工学版), 2023, 53(9): 2533-2541.
[3] 樊学平,周衡,刘月飞. 桥梁时变可靠性的多过程贝叶斯动态混合预测[J]. 吉林大学学报(工学版), 2023, 53(8): 2332-2338.
[4] 许良,边钰博,周松,肖景厚. 高温水浸对T800/环氧树脂基复合材料性能的影响[J]. 吉林大学学报(工学版), 2023, 53(7): 1943-1950.
[5] 熊二刚,巩忠文,罗佳明,范团结. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4): 1094-1104.
[6] 王晓东,李宁静,李强. 高压脉冲放电破碎混凝土梁试验[J]. 吉林大学学报(工学版), 2023, 53(2): 496-504.
[7] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[8] 魏丽丽,胡明玉. 砂浆碱集料反应细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(12): 3501-3507.
[9] 戴理朝,周亮,杨晓文,王磊. 基于Connector单元的锈蚀RC梁界面粘结性能细观数值模拟[J]. 吉林大学学报(工学版), 2023, 53(10): 2886-2896.
[10] 褚云朋,孙鑫晖,李明,姚勇,黄汉杰. 下击暴流作用下圆形马鞍面屋盖风压特性[J]. 吉林大学学报(工学版), 2022, 52(8): 1826-1833.
[11] 姚勇,苏留锋,李明,褚云朋,黄汉杰. 下击暴流作用下双面球壳型屋面风载特性[J]. 吉林大学学报(工学版), 2022, 52(3): 615-625.
[12] 匡亚川,宋哲轩,刘胤虎,莫小飞,伏亮明,罗时权. 新型装配式双舱综合管廊力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 596-603.
[13] 王毅红,田桥罗,兰官奇,姚圣法,张建雄,刘喜. 630 MPa高强钢筋混凝土大偏压柱受力性能试验[J]. 吉林大学学报(工学版), 2022, 52(11): 2626-2635.
[14] 龚永智,况锦华,柯福隆,周泉,罗小勇. UHPC连接的装配式剪力墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2367-2375.
[15] 樊学平,杨光红,尚志鹏,赵小雄,肖青凯,刘月飞. 考虑适用性的大跨桥梁主梁动态可靠性融合预测[J]. 吉林大学学报(工学版), 2022, 52(1): 144-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!