吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 132-140.doi: 10.13229/j.cnki.jdxbgxb.20230326

• 交通运输工程·土木工程 • 上一篇    

城市轨道交通跨环线的跨线列车开行方案优化

田佩宁1,2(),童瑞咏1,2,王海鹏3,毛保华1,2(),张皓翔4,卢霞1,2   

  1. 1.北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044
    2.北京交通大学 中国综合交通研究中心,北京 100044
    3.交通运输部公路科学研究院 智能交通研究中心,北京 100088
    4.北京城建设计发展集团股份有限公司 轨道院,北京 100037
  • 收稿日期:2023-04-08 出版日期:2025-01-01 发布日期:2025-03-28
  • 通讯作者: 毛保华 E-mail:21114061@bjtu.edu.cn;bhmao@bjtu.edu.cn
  • 作者简介:田佩宁(1997-),女,博士研究生.研究方向:交通运输规划与管理.E-mail: 21114061@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(71971021)

Optimization of cross-line train operation across the urban rail transit loop line

Pei-ning TIAN1,2(),Rui-yong TONG1,2,Hai-peng WANG3,Bao-hua MAO1,2(),Hao-xiang ZHANG4,Xia LU1,2   

  1. 1.Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China
    2.Integrated Transportation Research Centre of China,Beijing Jiaotong University,Beijing 100044,China
    3.Intelligent Transportation Research Centre,Research Institute of Highway Ministry of Transport,Beijing 100088,China
    4.Orbital Courtyard,Beijing Urban Construction Design and Development Group Co. ,Ltd. ,Beijing 100037,China
  • Received:2023-04-08 Online:2025-01-01 Published:2025-03-28
  • Contact: Bao-hua MAO E-mail:21114061@bjtu.edu.cn;bhmao@bjtu.edu.cn

摘要:

为缓解城市轨道交通换乘站压力、提升轨道交通服务水平,以环线和半径线的组合形式为研究对象,以跨线直达乘客数最大、乘客总出行时间最短、车辆走行公里数最少为目标,考虑发车间隔、满载率、运用列车数等约束,构建环线和半径线之间的跨线列车开行方案规划模型,在分析环线特点的基础上进行客流分配,并设计包含OD客流路径分配的遗传算法进行求解。算例表明:与独立运营模式相比,环线与半径线之间采取跨线运营能够优化运力资源配置,大幅提升乘客直达性和服务水平。当目标函数权重系数比为3:1:1时,跨线客流需求中33.76%(1.10万人次)的乘客可避免换乘实现直达,乘客总出行时间缩短1.11%,车辆走行公里数减少1.05%。

关键词: 城市轨道交通, 环线, 跨线运营, 开行方案, 遗传算法, 客流分配

Abstract:

To alleviate the pressure on transfer station and enhance the service level of urban rail transport, the planning model for the cross-line operation scheme between the loop line and radial line was constructed by taking the combination of loop line and radial line as the research object. The objective was to maximize the number of direct passengers, minimize total passenger travel time and the distance traveled by trains. Taking into account constraints such as departure intervals, passenger load factors, and the number of trains, and considering passenger flow distribution based on the characteristics of the loop line, a genetic algorithm was designed that includes OD passenger flow distribution to solve the model. The case study shows that compared to independent operation, the cross-line operation between the loop line and radial line can optimize the allocation of capacity resources and improve passenger directness and service quality. When the coefficient weights of the objective function were set to a ratio of 3:1:1, 33.76% (11,000 passengers) of the transfer passengers can avoid transfers and achieve direct travel, resulting in a 1.11% reduction in total passenger travel time and a 1.05% reduction in distance traveled by trains.

Key words: urban rail transit, loop line, cross-line operation, operation scheme, genetic algorithms, passenger flow distribution

中图分类号: 

  • U292.4

图1

半径线和环线的组合形式示意图"

表1

模型符号定义"

符号含义符号含义
A=mode1,mode2运营模式集合,mode1代表独立运营模式,mode2代表跨线运营模式TPi,Pj起点为Pi区段、终点为Pj区段乘客的总出行时间/min
S=s1,s2,???,str,???,sa,???,sn组合线路的车站集合,str代表换乘站,sa代表跨线交路折返站,tra分别为换乘站、跨线交路折返站编号LAA模式下的车辆走行公里数/(veh·km-1
S'具有折返能力的车站集合UAA模式下的小时运用列车数/列
MhMb环线、半径线的车站数/站m列车编组数/(辆·列-1
od,o,dSo表示乘客的起点站,d表示乘客的终点站C车辆额定载员/(人·辆-1
J=N,S,B,E交路集合,分别表示外环交路、内环交路、半径线交路、跨线交路lhlb环线、半径线的线路长度/km
fJAA模式下J交路的开行频率/[(对·h-1-1lii站的站间距/km
qod,o,dS以车站o为起点、d为终点的OD客流量/(人·h-1lz折返走行距离/km
qEqZ跨线直达乘客数、跨线需求总乘客数/人tJJ交路的列车周转时间/min
Pi,i=1,2,3i个OD区段tttztr停站、折返、换乘走行时间/min
QPi+Pi区段上行区间的小时断面客流量集合/(人·h-1ηmax最大满载率/%
QPi-Pi区段下行区间的小时断面客流量集合/(人·h-1fminfmax最小、最大发车频率/[(对·h-1-1
TAA模式下的乘客总出行时间/minωi,i=1,2,3i个目标的权重系数

表2

跨线运营模式下乘客的路径选择"

OD区段dP1dP2dP3
oP1B?or?EEB?or?ES,str+λ<dEN,o>d,str+λd
oP2EE?or?N,o<dE?or?S,o>dN,do+λ??S,d>o+λN,d<o+λ??S,d>o+λS?or?N,d=o+λ
oP3NB?or?E,str+λ<oSE,o>d,str+λoN,do+λS,d>o+λN,do+λ??S,d>o+λN,d<o+λ??S,d>o+λS?or?N,d=o+λ

表3

对应路径的客流量 (人/h)"

OD区段dP1dP2dP3
oP1d=1stro=1strqodd=strsao=1str-1qodd=str+λ+1sno=1str-1qod?d=sastr+λo=1str-1qod
oP2d=1str-1o=strsaqodd=o+1sao=strsaqod?d=stro-1o=strsaqod

d=sa+1o+λo=strsaqod?d=o+λ+1sno=strsaqod

d=sa+1o+λo=strsaqod?d=o+λ+1sno=strsaqodd=o+λsno=strsaqod

oP3d=1str-1o=str+λ+1snqodd=1str-1o=sastr+λqodo=d+λ+1snd=strsaqod?o=sa+1d+λd=strsaqod

d=o+1sno=sa+1snqod?d=sa+1o-1o=sa+1snqod

d=sa+1o+λo=strsaqod?d=o+λ+1sno=strsaqodd=o+λsno=strsaqod

表4

跨线运营模式下乘客平均出行时间 (min)"

OD区段dP1dP2dP3
oP130/fBmode2+fEmode230/fEmode230/fBmode2+fEmode2+tr+30/fSmode230/fEmode2+60/fNmode2+fEmode2
oP230/fEmode230/fNmode2+fEmode2?30/fSmode2+fEmode230/fNmode2?30/fSmode230/fNmode2?30/fSmode230/fNmode2+fSmode2
oP330/fBmode2+fEmode2+tr+30/fNmode230/fSmode2+60/fSmode2+fEmode230/fNmode2?30/fSmode230/fNmode2?30/fSmode230/fNmode2?30/fSmode230/fNmode2+fSmode2

图2

染色体编码示意图"

图3

算例线路示意图"

图4

算例线路的OD客流量"

图5

算法求解过程"

表5

求解结果"

运营模式开行方案

函数目

标值

乘客出行时间/min车辆走行公里数/(veh·km-1跨线直达乘客数/人运用列车数/列
safBAfEAfNAfSA
独立运营-14-1414-372 8201 148-41
跨线运营178612120.835 0373 1901 14813 45541

表6

不同权重的求解结果"

ω1:ω2:ω3开行方案

目标函

数值

乘客出行时间变化率/%

车辆走行公里数

变化率/%

跨线直达乘客数占比运用车数/辆
safBAfEAfNAfSA
3:3:4178612120.835 00.10%041.34%41
2:2:1158612120.931 12.16%-2.53%33.76%40
3:1:1157712120.923 7-1.11%-1.05%33.76%41
1:3:1138612120.930 04.46%-5.05%24.41%39
1 Shi R J, Mao B H, Ding Y, et al. Timetable optimization of rail transit loop line with transfer coordination[J]. Discrete Dynamics in Nature and Society, 2016:No. 4627094.
2 田静.城市轨道交通网络化运营中的信号系统互联互通方案[J].城市轨道交通研究,2018,21(Sup.1):28-30.
Tian Jing. Interconnection and interoperability scheme for rail transit autonomous network operation[J]. Urban Mass Transit, 2018, 21(Sup.1): 28-30.
3 乐梅,王宁宁,杨婧,等.城市轨道交通互联互通网络化行车组织方案初探[J].都市快轨交通,2020,33(4):9-13, 44.
Le Mei, Wang Ning-ning, Yang Jing, et al. A preliminary study on the network operation scheme for the CBTC interconnection[J]. Urban Rapid Rail Transit, 2020, 33(4): 9-13, 44.
4 Ju Y N, Yuan H H, Li Z P, et al. Multilayer structures and resilience evaluation for multimode regional rail transit system[J]. IET Intelligent Transport Systems, 2022, 16(7): 843-859.
5 郭建民,韩林飞,周建国,等.Y形共线模式下轨道交通列车开行方案研究[J].铁道工程学报,2017,34(2):87-92.
Guo Jian-min, Han Lin-fei, Zhou Jian-guo, et al. Research on the operation scheme for rail transit with the Y shaped collinear mode[J]. Journal of Railway Engineering Society, 2017, 34(2): 87-92.
6 杨安安,汪波,陈艳艳,等.基于能力影响的城市轨道交通跨线列车开行方案研究[J].交通运输系统工程与信息,2017,17(6):221-227.
Yang An-an, Wang Bo, Chen Yan-yan, et al. Plan of cross-line train in urban rail transit based on the capacity influence[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 221-227.
7 Yang A A, Wang B, Huang J L, et al. Service replanning in urban rail transit networks: cross-line express trains for reducing the number of passenger transfers and travel time[J]. Transportation Research Part C, 2020, 115: No.102629.
8 Sun L S, Lu H B, Xu Y, et al. Fairness-oriented train service design for urban rail transit cross-line operation[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 606: No.128124.
9 曾庆文,彭其渊.考虑多编组的城轨列车跨线运营开行方案研究[J].铁道科学与工程学报,2023,20(3):878-889.
Zeng Qing-wen, Peng Qi-yuan. Study on the cross-line train plan in urban rail transit considering the multi-group train[J]. Journal of Railway Science and Engineering, 2023, 20(3): 878-889.
10 罗钦,林彬,顾孟琪,等.基于时间成本的城轨列车跨线开行方案建模[J].深圳大学学报:理工版,2022,39(5):600-607.
Luo Qin, Lin Bin, Gu Meng-qi, et al. Modeling of cross line operation of urban rail transit trains based on passenger travel time[J]. Journal of Shenzhen University Science and Engineering, 2022, 39(5): 600-607.
11 黄俊生,陈垚,张安英,等.考虑互联互通的城市轨道交通网络列车开行方案优化[J].铁道科学与工程学报,2023,20(5):1587-1597.
Huang Jun-sheng, Chen Yao, Zhang An-ying, et al. Optimization of urban rail network operation scheme considering interconnection[J]. Journal of Railway Science and Engineering, 2023, 20(5): 1587-1597.
12 Ma Y Q. Optimization algorithm of urban rail transit network route planning using deep learning technology[J]. Computational Intelligence and Neuroscience, 2022, 2022: No.2024686.
13 Li L, Meng X L, Cheng X Q, et al. Train service plan design under the condition of multimodal rail transit systems integration and interconnection[J]. Journal of Advanced Transportation, 2023 (1): No.8275191.
14 吴文静,熊康贝,贾洪飞,等.城市群轨道交通直通线路优化设置方法[J].吉林大学学报:工学版, 2024, 54(3): 711-718.
Wu Wen-jing, Xiong Kang-bei, Jia Hong-fei, et al. Optimal setting method of rail transit through lines in urban agglomeration[J]. Journal of Jilin University(Engineering and Technology Edition),2024, 54(3): 711-718.
15 田佩宁,毛保华,周琪,等.城市轨道交通不成对开行方案研究[J].深圳大学学报:理工版,2023,40(5):521-528.
Tian Pei-ning, Mao Bao-hua, Zhou Qi, et al. The unpaired operation of urban rail transit[J]. Journal of Shenzhen University(Science and Engineering),2023,40(5):521-528.
16 魏润斌,贾顺平,毛保华,等.考虑满载率均衡的城市轨道交通直通运营开行方案优化[J].哈尔滨工业大学学报,2023,55(3):68-77.
Wei Run-bin, Jia Shun-ping, Mao Bao-hua, et al. Train planning optimization for through operation of urban rail transit considering the balance of load factors [J]. Journal of Harbin Institute of Technology, 2023, 55(3): 68-77.
17 Huang K, Liao F X, Gao Z Y. An integrated model of energy-efficient timetabling of the urban rail transit system with multiple interconnected lines[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: No.103171.
18 许得杰, 毛保华, 陈绍宽, 等. 考虑开行比例的大小交路列车开行方案优化[J]. 交通运输工程学报, 2021, 21(2):173-186.
Xu De-jie, Mao Bao-hua, Chen Shao-kuan, et al. Optimization of operation scheme for full-length and short-turn routings considering operation proportion[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 173-186.
19 刘剑锋. 基于换乘的城市轨道交通网络流量分配建模及其实证研究[D]. 北京: 北京交通大学交通运输学院, 2012.
Liu Jian-feng. Transfer-based modeling flow assignment with empirical analysis for urban rail transit network[D]. Beijing: School of Transportation, Beijing Jiaotong University, 2012.
[1] 张娜,陈峰,王剑坡,朱亚迪. 基于时空序列相似性的城轨乘客出行模式识别[J]. 吉林大学学报(工学版), 2024, 54(9): 2588-2599.
[2] 朱瑾,黄琦. 路网资源分配下自动化码头水平运输调度与路径规划[J]. 吉林大学学报(工学版), 2024, 54(8): 2245-2255.
[3] 张良力,马晓凤. 基于改进粒子群算法的新能源汽车充电站选址方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2275-2281.
[4] 朱瑾,刘洋. 进口集装箱堆场箱位分配与场桥调度协同优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1347-1354.
[5] 张延安,杜岳峰,孟青峰,栗晓宇,刘磊,朱忠祥. 基于改进遗传算法的湿式离合器压力自适应控制[J]. 吉林大学学报(工学版), 2024, 54(3): 852-864.
[6] 范博松,邵春福. 城市轨道交通突发事件风险等级判别方法[J]. 吉林大学学报(工学版), 2024, 54(2): 427-435.
[7] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[8] 田国红,代鹏杰. 基于单亲遗传算法的无人驾驶汽车主动避撞方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2404-2409.
[9] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[10] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[11] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[12] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[13] 张惠臻,高正凯,李建强,王晨曦,潘玉彪,王成,王靖. 基于循环神经网络的城市轨道交通短时客流预测[J]. 吉林大学学报(工学版), 2023, 53(2): 430-438.
[14] 王菁,万峰,董春娇,邵春福. 城市轨道交通站点吸引范围及强度建模[J]. 吉林大学学报(工学版), 2023, 53(2): 439-447.
[15] 王清永,曲伟强. 基于线性规划的城市轨道交通运行调度优化算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3446-3451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!