吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (8): 2275-2281.doi: 10.13229/j.cnki.jdxbgxb.20230249

• 交通运输工程·土木工程 • 上一篇    下一篇

基于改进粒子群算法的新能源汽车充电站选址方法

张良力1(),马晓凤2   

  1. 1.武汉科技大学 信息科学与工程学院,武汉 430081
    2.武汉理工大学 智能交通系统研究中心,武汉 430063
  • 收稿日期:2023-03-21 出版日期:2024-08-01 发布日期:2024-08-30
  • 作者简介:张良力(1981-),男,副教授,博士.研究方向:新能源电力与控制,智能运输系统. E-mail:zhangliangli@wust.edu.cn
  • 基金资助:
    国家重点研发计划交通基础设施重点专项项目(2021YFB2601300)

New energy vehicle charging station location method based on improved particle swarm optimization algorithm

Liang-li ZHANG1(),Xiao-feng MA2   

  1. 1.School of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan 430081,China
    2.Intelligent Transportation Systems Research Center,Wuhan University of Technology,Wuhan 430063,China
  • Received:2023-03-21 Online:2024-08-01 Published:2024-08-30

摘要:

为提高汽车充电站布局的合理性,减少资源浪费,提出基于改进粒子群算法的新能源汽车充电站选址方法。预测电动汽车未来分布情况,将用户出行特征、交通密度、服务半径等因素作为选址的参考依据;以需求点到充电站间的距离最短为目标函数,设置相关约束条件,建立选址模型;探究经典粒子群算法的实现过程,获取粒子速度与位置更新公式;针对方法容易陷入局部最优问题,使用遗传算法对其加以改进;利用改进后的算法求解目标函数,设置初始参数和判定条件,增加粒子交叉、变异等操作,提高粒子群质量,当满足迭代次数要求时,输出个体最优位置,即充电站选址的最优方案。实验结果表明:本文方法所选的位置符合目标函数要求,令充电需求均衡,避免了资源浪费。

关键词: 粒子群优化, 遗传算法, 新能源汽车, 充电站选址, 目标函数

Abstract:

In order to improve the rationality of vehicle charging station layout and reduce resource waste, a new energy vehicle charging station location method based on improved particle swarm optimization algorithm is proposed. Predict the future distribution of electric vehicles, and take the user travel characteristics, traffic density, service radius and other factors as the reference basis for location selection; Taking the shortest distance between the demand point and the charging station as the objective function, set the relevant constraints and establish the location model; Explore the implementation process of classical particle swarm optimization algorithm, and obtain particle velocity and position update formula; Aiming at the problem that the method is easy to fall into local optimum, genetic algorithm is used to improve it; The improved algorithm is used to solve the objective function, set the initial parameters and judgment conditions, increase the particle crossover, mutation and other operations, and improve the quality of particle swarm. When the requirements of iteration times are met, the optimal location of the individual is output, that is, the optimal scheme for the location of the charging station. The experimental results show that the location selected by the proposed method can meet the demand of the objective function, balance the charging demand, and avoid resource waste.

Key words: particle swarm optimization, genetic algorithm, new energy vehicles, location of charging station, objective function

中图分类号: 

  • TP391

表1

实验参数表"

参数名称参数值
粒子群种群规模/个50
选择概率0.3
交叉概率0.7
变异概率0.02
最大迭代次数400
电池容量/kWh55
电动汽车每公里电耗/(kWh·km-10.14

图1

未来电动汽车数量预测曲线"

图2

用户出行特征研究结果"

图3

需求点位置示意"

图4

本文方法充电站选址结果"

图5

改进免疫克隆算法选址结果"

图6

密度峰值聚类方法选址结果"

图7

不同算法的适应度曲线图"

1 吴雨, 王育飞, 张宇, 等.基于改进免疫克隆选择算法的电动汽车充电站选址定容方法[J]. 电力系统自动化,2021, 45(7): 95-103.
Wu Yu, Wang Yu-fei, Zhang Yu, et al. Siting and sizing method of electric vehicle charging station based on improved immune clonal selection algorithm[J]. Automation of Electric Power Systems, 2021,45(7): 95-103.
2 张艺涵, 徐菁, 李秋燕, 等. 基于密度峰值聚类的电动汽车充电站选址定容方法[J]. 电力系统保护与控制, 2021, 49(5): 132-139.
Zhang Yi-han, Xu Jing, Li Qiu-yan, et al. An electric vehicle charging station siting and sizing method based on a density peaks clustering algorithm[J]. Power System Protection and Control, 2021, 49 (5): 132-139.
3 冯春, 陈木泉, 蒋雪. 随机充电需求下城市电动汽车充电站选址优化[J]. 计算机仿真, 2022, 39(11): 193-198, 442.
Feng Chun, Chen Mu-quan, Jiang Xue. Location optimization of urban electric vehicle charging station under random charging demand[J]. Computer Simulation, 2022,39 (11): 193-198, 442.
4 田枫, 陈淮莉. 考虑用户选择偏好的电动汽车充电站规划研究[J]. 计算机工程与应用, 2022, 58(15): 294-301.
Tian Feng, Chen Huai-li. Research on planning of electric vehicle charging station considering user choice preference [J]. Computer Engineering and Applications, 2022,58 (15): 294-301.
5 孙秉珍, 杨佳楠, 白军成, 等. 充电中断情景下电动汽车充电站两阶段多目标区间选址优化决策[J]. 控制与决策, 2022, 37(4): 1005-1014.
Sun Bing-zhen, Yang Jia-nan, Bai Jun-cheng, et al. A two-stage multi-objective interval location optimization decision of electric vehicle charging station under charging interruption scenario[J]. Control and Decision, 2022,37 (4): 1005-1014.
6 肖白, 高峰. 含不同容量充电桩的电动汽车充电站选址定容优化方法[J]. 电力自动化设备, 2022, 42(10): 157-166.
Xiao Bai, Gao Feng. Optimization method of electric vehicle charging stations'site selection and capacity determination considering charging piles with different capacities[J]. Electric Power Automation Equipment, 2022,42(10): 157-166.
7 严干贵, 刘华南, 韩凝晖, 等. 计及电动汽车时空分布状态的充电站选址定容优化方法[J]. 中国电机工程学报, 2021, 41(18): 6271-6284.
Yan Gan-gui, Liu Hua-nan, Han Ning-hui, et al. An optimization method for location and capacity determination of charging stations considering spatial and temporal distribution of electric vehicles[J]. Proceedings of the CSEE, 2021,41(18): 6271-6284.
8 武渊, 叶宁.城市路网中电动汽车充电站双层多目标选址定容模型[J]. 山西大学学报: 自然科学版, 2021, 44(4): 695-704.
Wu Yuan, Ye Ning. Double-layer multi-objective location and capacity model for electric vehicle charging stations in urban road networks [J]. Journal of Shanxi University(Natural Science Edition), 2021,44 (4): 695-704.
9 魏路,高磊,李晋宏,等. 基于密度峰值聚类的交通控制子区划分方法 [J].吉林大学学报:工学版,2023,53(1):124-131.
Wei Lu, Gao Lei, Li Jin-hong, et al. Traffic sub⁃area division method based on density peak clustering [J]. Journal of Jilin University (Engineering and Technology Edition),2023,53(1): 124-131.
10 Li C, Zhang L, Ou Z, et al. Robust model of electric vehicle charging station location considering renewable energy and storage equipment[J]. Energy, 2022, (Jan.1 Pt.A): 121713.
11 Mowry A M, Mallapragada D S. Grid impacts of highway electric vehicle charging and role for mitigation via energy storage[J]. Energy Policy, 2021, 157: 112508.
12 Akbari-Dibavar A, Tabar V S, Zadeh S G, et al. Two-stage robust energy management of a hybrid charging station integrated with the photovoltaic system[J]. International Journal of Hydrogen Energy, 2021, 46(24): 12701-12714.
13 Schmidt M, Zmuda-Trzebiatowski P, Kicinski M, et al. Multiple-criteria-based electric vehicle charging infrastructure design problem[J]. Energies, 2021, 14(11): 61364214.
14 Anzola J, Aizpuru I, Arruti A. Partial power processing based converter for electric vehicle fast charging stations[J]. Electronics, 2021, 10(3): 13320260.
15 Welzel F, Klinck C F, Pohlmann Y, et al. Grid and user-optimized planning of charging processes of an electric vehicle fleet using a quantitative optimization model[J]. Applied Energy, 2021, 290(1):116717.
16 Xiao Y, Zhang Y, Kaku I, et al. Electric vehicle routing problem: a systematic review and a new comprehensive model with nonlinear energy recharging and consumption[J]. Renewable and Sustainable Energy Reviews, 2021, 151(9): 111567.
17 马云清, 马国顺. 演化博弈视角下PPP模式在新能源汽车换电模式中的应用分析[J]. 应用数学进展, 2021, 10(6): 1887-1903.
Ma Yun-qing, Ma Guo-shun. Application analysis of PPP mode in new energy vehicle battery exchange mode from the perspective of evolutionary game[J]. Advances in Applied Mathematics, 2021, 10(6):1887-1903.
18 李翠玉, 胡雅梦, 康亚伟, 等. 应用自适应遗传算法的电动汽车充放电协同调度[J]. 吉林大学学报: 工学版, 2022, 52(11): 2508-2513.
Li Cui-yu, Hu Ya-meng, Kang Ya-wei, et al. Coordination scheduling of electric vehicle charge and discharge using adaptive genetic algorithm [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2508-2513.
19 Chen Q, Huang K, Ferguson M R. Capacity expansion strategies for electric vehicle charging networks: model, algorithms, and case study[J]. Naval Research Logistics (NRL), 2022, 69(3): 442-460.
20 Fescioglu-Unver N, Akta M Y, Kasnakolu C. Feedback controlled resource management model for express service in electric vehicle charging stations[J]. Journal of Cleaner Production, 2021, 311(1): 127629.
[1] 朱瑾,黄琦. 路网资源分配下自动化码头水平运输调度与路径规划[J]. 吉林大学学报(工学版), 2024, 54(8): 2245-2255.
[2] 陈涛,周志刚,雷楠南. 粒子群算法下汽车机械式自动变速系统参数多目标优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1214-1220.
[3] 朱瑾,刘洋. 进口集装箱堆场箱位分配与场桥调度协同优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1347-1354.
[4] 巩亚东,丁明祥,李响,田近民. TC4钛合金材料铣削加工分析及参数优化[J]. 吉林大学学报(工学版), 2024, 54(4): 917-925.
[5] 张延安,杜岳峰,孟青峰,栗晓宇,刘磊,朱忠祥. 基于改进遗传算法的湿式离合器压力自适应控制[J]. 吉林大学学报(工学版), 2024, 54(3): 852-864.
[6] 郑长江,胡欢,杜牧青. 考虑枢纽失效的多式联运快递网络结构设计[J]. 吉林大学学报(工学版), 2023, 53(8): 2304-2311.
[7] 李建华,王泽鼎. 考虑路径耗时的城市汽车分布式充电桩选点规划[J]. 吉林大学学报(工学版), 2023, 53(8): 2298-2303.
[8] 田国红,代鹏杰. 基于单亲遗传算法的无人驾驶汽车主动避撞方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2404-2409.
[9] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[10] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[11] 李艳波,柳柏松,姚博彬,陈俊硕,渠开发,武奇生,曹洁宁. 考虑路网随机特性的高速公路换电站选址[J]. 吉林大学学报(工学版), 2023, 53(5): 1364-1371.
[12] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于NSGA⁃II的斜齿轮宏观参数多目标优化[J]. 吉林大学学报(工学版), 2023, 53(4): 1007-1018.
[13] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[14] 张铮,朱齐丹,吕晓龙,樊星. 冗余机械臂运动学逆解的求解优化方法[J]. 吉林大学学报(工学版), 2023, 53(12): 3379-3387.
[15] 应沛然,曾小清,沈拓,袁腾飞,宋海峰,王奕曾. 基于冗余工序编码的高速列车节能驾驶智能算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3404-3414.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .