吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (2): 419-433.doi: 10.13229/j.cnki.jdxbgxb.20231033
• 综述 • 上一篇
陈发城1(
),鲁光泉2,林庆峰2,张浩东3,马社强1(
),刘德志4,宋会军4
Fa-cheng CHEN1(
),Guang-quan LU2,Qing-feng LIN2,Hao-dong ZHANG3,She-qiang MA1(
),De-zhi LIU4,Hui-jun SONG4
摘要:
从影响机理和提升方法两个层面总结了驾驶人接管行为领域的研究现状。在接管行为影响机理层面,将影响驾驶人接管行为的因素系统地分为自动驾驶系统因素、交通因素和驾驶人因素,并且更加细致地总结了驾驶人因素的影响机理;在接管行为提升方法层面,结合接管行为影响机理研究结论,从人机交互优化设计、接管行为建模预测、驾驶人接管培训等方面总结了改善驾驶人接管行为的一系列方法;最后,从研究机理和提升方法两个层面,提出了当前存在的问题和未来研究方向。
中图分类号:
| 1 | Chen F, Lu G, Tan H, et al. Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers[J]. Accident Analysis & Prevention, 2022, 177: 106826. |
| 2 | 中华人民共和国工业和信息化部科技司. 《汽车驾驶自动化分级》推荐性国家标准报批公示[EB/OL]. [2020-03-09]. . |
| 3 | Chen F, Lu G, Lin Q, et al. Are novice drivers competent to take over control from level 3 automated vehicles? A comparative study with experienced drivers[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81: 65-81. |
| 4 | Coughlin J F, Reimer B, Mehler B. Driver wellness, safety & the development of an awarecar[J]. AgeLab, 2009, 15: 20100676. |
| 5 | 严利鑫, 冯进培, 郭军华, 等. 不同险态情景下共驾型智能车辆接管行为特征分析[J].吉林大学学报: 工学版, 2024, 54(3): 683-691. |
| Yan Li-xin, Feng Jin-pei, Guo Jun-hua, et al. Analysis of characteristics of the takeover behavior of co-driving intelligent vehicles under different dangerous scenarios[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(3): 683-691. | |
| 6 | Eriksson A, Stanton N A. Takeover time in highly automated vehicles: noncritical transitions to and from manual control[J]. Human Factors, 2017, 59(4): 689-705. |
| 7 | Mcdonald A D, Alambeigi H, Engström J, et al. Toward computational simulations of behavior during automated driving takeovers: a review of the empirical and modeling literatures[J]. Human Factors, 2019, 61(4): 642-688. |
| 8 | Zeeb K, Buchner A, Schrauf M. What determines the take-over time? An integrated model approach of driver take-over after automated driving[J]. Accident Analysis & Prevention, 2015, 78: 212-221. |
| 9 | Gold C, Happee R, Bengler K. Modeling take-over performance in level 3 conditionally automated vehicles[J]. Accident Analysis & Prevention, 2018, 116: 3-13. |
| 10 | Louw T, Markkula G, Boer E, et al. Coming back into the loop: drivers´ perceptual-motor performance in critical events after automated driving[J]. Accident Analysis & Prevention, 2017, 108: 9-18. |
| 11 | Eriksson A, Petermeijer S M, Zimmermann M, et al. Rolling out the red (and green) carpet: supporting driver decision making in automation-to-manual transitions[J]. IEEE Transactions on Human-Machine Systems, 2018, 49(1): 20-31. |
| 12 | Zeeb K, Härtel M, Buchner A, et al. Why is steering not the same as braking? The impact of non-driving related tasks on lateral and longitudinal driver interventions during conditionally automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 50: 65-79. |
| 13 | Petermeijer S, Bazilinskyy P, Bengler K, et al. Take-over again: investigating multimodal and directional TORs to get the driver back into the loop[J]. Applied Ergonomics, 2017, 62: 204-215. |
| 14 | Vogelpohl T, Kühn M, Hummel T, et al. Transitioning to manual driving requires additional time after automation deactivation[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 55: 464-482. |
| 15 | Wu H, Wu C, Lyu N, et al. Does a faster takeover necessarily mean it is better? A study on the influence of urgency and takeover-request lead time on takeover performance and safety[J]. Accident Analysis & Prevention, 2022, 171: 106647. |
| 16 | Wan J, Wu C. The effects of lead time of take-over request and nondriving tasks on taking-over control of automated vehicles[J]. IEEE Transactions on Human-Machine Systems, 2018, 48(6): 582-591. |
| 17 | Körber M, Baseler E, Bengler K. Introduction matters: manipulating trust in automation and reliance in automated driving[J]. Applied Ergonomics, 2018, 66: 18-31. |
| 18 | Strand N, Nilsson J, Karlsson I C M A, et al. Semi-automated versus highly automated driving in critical situations caused by automation failures[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 27: 218-228. |
| 19 | Ko S M, Ji Y G. How we can measure the non-driving-task engagement in automated driving: comparing flow experience and workload[J]. Applied Ergonomics, 2018, 67: 237-245. |
| 20 | Clark H, Feng J. Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation[J]. Accident Analysis & Prevention, 2017, 106: 468-479. |
| 21 | Alrefaie M T, Summerskill S, Jackon T W. In a heart beat: using driver's physiological changes to determine the quality of a takeover in highly automated vehicles[J]. Accident Analysis & Prevention, 2019, 131: 180-190. |
| 22 | Yi B, Cao H, Song X, et al. How to identify the take-over criticality in conditionally automated driving? An examination using drivers' physiological parameters and situational factors[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 85: 161-178. |
| 23 | Radhakrishnan V, Merat N, Louw T, et al. Physiological indicators of driver workload during car-following scenarios and takeovers in highly automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 87: 149-163. |
| 24 | 翟俊达, 鲁光泉, 陈发城. 自动驾驶水平对驾驶行为稳定时间的影响分析[J].北京航空航天大学学报, 2024, 50(11): 3477-3483. |
| Zhai Jun-da, Lu Guang-quan, Chen Fa-cheng. Effect analysis of automation levels on stabilization time of driving behaviors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(11): 3477-3483. | |
| 25 | Xu L, Guo L, Ge P, et al. Effect of multiple monitoring requests on vigilance and readiness by measuring eye movement and takeover performance[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 91: 179-190. |
| 26 | Merat N, Jamson A H, Lai F C H, et al. Transition to manual: driver behaviour when resuming control from a highly automated vehicle[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 27: 274-282. |
| 27 | Lu Z, Coster X, Winter J. How much time do drivers need to obtain situation awareness? A laboratory-based study of automated driving[J]. Applied Ergonomics, 2017, 60: 293-304. |
| 28 | Zhang B, Winter J, Varotto S, et al. Determinants of take-over time from automated driving: a meta-analysis of 129 studies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 64: 285-307. |
| 29 | 林庆峰, 王兆杰, 鲁光泉. 城市道路环境下自动驾驶车辆接管行为分析[J]. 中国公路学报, 2019, 32(6): 240-247. |
| Lin Qing-feng, Wang Zhao-jie, Lu Guang-quan. Analysis of take-over performance for automated vehicles in urban road environments[J]. China Journal of Highway and Transport, 2019, 32(6): 240-247. | |
| 30 | Wandtner B, Schömig N, Schmidt G. Effects of non-driving related task modalities on takeover performance in highly automated driving[J]. Human Factors, 2018, 60(6): 870-881. |
| 31 | Guo L, Xu L, Ge P, et al. How resource demands of nondriving-related tasks and engagement time affect drivers´ physiological response and takeover performance in conditional automated driving[J]. IEEE Transactions on Human-Machine Systems, 2023, 53(3): 600-609. |
| 32 | Dogan E, Rahal M C, Deborne R, et al. Transition of control in a partially automated vehicle: effects of anticipation and non-driving-related task involvement[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2017, 46: 205-215. |
| 33 | Lu G, Zhai J, Li P, et al. Measuring drivers´takeover performance in varying levels of automation: Considering the influence of cognitive secondary task[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 82: 96-110. |
| 34 | Hergeth S, Lorenz L, Krems J F. Prior familiarization with takeover requests affects drivers´takeover performance and automation trust[J]. Human Factors, 2017, 59(3): 457-470. |
| 35 | Louw T, Merat N. Are you in the loop? Using gaze dispersion to understand driver visual attention during vehicle automation[J]. Transportation Research Part C: Emerging Technologies, 2017, 76: 35-50. |
| 36 | Wright T J, Agrawal R, Samuel S, et al. Effective cues for accelerating young drivers´ time to transfer control following a period of conditional automation[J]. Accident Analysis & Prevention, 2018, 116: 14-20. |
| 37 | Politis I, Brewster S, Pollick F. Using multimodal displays to signify critical handovers of control to distracted autonomous car drivers[J]. International Journal of Mobile Human Computer Interaction, 2017, 9(3): 1-16. |
| 38 | Naujoks F, Mai C, Neukum A. The effect of urgency of take-over requests during highly automated driving under distraction conditions[J]. Advances in Human Aspects of Transportation, 2014, 7: 100646. |
| 39 | Körber M, Gold C, Lechner D, et al. The influence of age on the take-over of vehicle control in highly automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2016, 39: 19-32. |
| 40 | Gold C, Körber M, Lechner D, et al. Taking over control from highly automated vehicles in complex traffic situations: the role of traffic density[J]. Human Factors, 2016, 58(4): 642-652. |
| 41 | Du N, Kim J, Zhou F, et al. Evaluating effects of cognitive load, takeover request lead time, and traffic density on drivers´ takeover performance in conditionally automated driving[C]∥12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New York, USA, 2020: 66-73. |
| 42 | Du N, Yang X J, Zhou F. Psychophysiological responses to takeover requests in conditionally automated driving[J]. Accident Analysis & Prevention, 2020, 148: 105804. |
| 43 | Li S, Blythe P, Guo W, et al. Investigation of older driver's takeover performance in highly automated vehicles in adverse weather conditions[J]. IET Intelligent Transport Systems, 2018, 12(9): 1157-1165. |
| 44 | Brandenburg S, Chuang L. Take-over requests during highly automated driving: how should they be presented and under what conditions?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66: 214-225. |
| 45 | Gong J, Guo X, Qi C, et al. Measuring takeover performance in different driving scenarios: considering the influence of non-driving-related tasks and takeover request lead time[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 97: 411-421. |
| 46 | 鲁光泉, 陈发城, 李鹏辉, 等.驾驶人跟车风险接受水平对其接管行为的影响[J].汽车工程, 2021, 43(6): 808-814. |
| Lu Guang-quan, Chen Fa-cheng, Li Peng-hui, et al. Effect of drivers´ acceptance level of car⁃following risk on the takeover performance[J]. Automotive Engineering, 2021, 43(6): 808-814. | |
| 47 | Wu Y, Kihara K, Hasegawa K, et al. Age-related differences in effects of non-driving related tasks on takeover performance in automated driving[J]. Journal of Safety Research, 2020, 72: 231-238. |
| 48 | Li S, Blythe P, Guo W, et al. Investigating the effects of age and disengagement in driving on driver´s takeover control performance in highly automated vehicles[J]. Transportation Planning and Technology, 2019, 42(5): 470-497. |
| 49 | So J J, Park S, Kim J, et al. Investigating the impacts of road traffic conditions and driver's characteristics on automated vehicle takeover time and quality using a driving simulator[J]. Journal of Advanced Transportation, 2021, 2021: 1-13. |
| 50 | 赵晓华, 陈浩林, 李振龙, 等. 不同情景下自动驾驶接管行为的影响特征[J]. 中国公路学报, 2022, 35(9): 195-214. |
| Zhao Xiao-hua, Chen Hao-lin, Li Zhen-long, et al. Influence characteristics of automated driving takeover behavior in different scenarios[J]. China Journal of Highway and Transport, 2022, 35(9): 195-214. | |
| 51 | Loeb H, Belwadi A, Maheshwari J, et al. Age and gender differences in emergency takeover from automated to manual driving on simulator[J]. Traffic Injury Prevention, 2019, 20(s2): 163-165. |
| 52 | Wright T J, Samuel S, Borowsky A, et al. Experienced drivers are quicker to achieve situation awareness than inexperienced drivers in situations of transfer of control within a level 3 autonomous environment[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2016, 60(1): 270-273. |
| 53 | 王琳岩, 张慧珺, 胡宏宇. 驾驶经验对L3级自动驾驶接管绩效的影响[J]. 汽车工程, 2022, 44(10): 1521-1526. |
| Wang Lin-yan, Zhang Hui-jun, Hu Hong-yu. Effect of driving experience on take-over performance of L3 automatic driving[J]. Automotive Engineering, 2022, 44(10): 1521-1526. | |
| 54 | Jin M, Lu G, Chen F, et al. Modeling takeover behavior in level 3 automated driving via a structural equation model: considering the mediating role of trust[J]. Accident Analysis & Prevention, 2021, 157: No.106156. |
| 55 | Weigl K, Schartmüller C, Wintersberger P, et al. The influence of experienced severe road traffic accidents on take-over reactions and non-driving-related tasks in an automated driving simulator study[J]. Accident Analysis & Prevention, 2021, 162: 106408. |
| 56 | Chen F, Lu G, Zhai J, et al. Investigating the impact of driving style on the take-over performance in level 3 automation[C]∥International Conference on Transportation and Development, Reston, USA, 2020: 146-156. |
| 57 | Payre W, Cestac J, Delhomme P. Fully automated driving: impact of trust and practice on manual control recovery[J]. Human Factors, 2016, 58(2): 229-241. |
| 58 | Brown I D. Driver fatigue[J]. Human Factors, 1994, 36(2): 298-314. |
| 59 | May J F, Baldwin C L. Driver fatigue: tthe importance of identifying causal factors of fatigue when considering detection and countermeasure technologies[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2009, 12(3): 218-224. |
| 60 | Vogelpohl T, Kühn M, Hummel T, et al. Asleep at the automated wheel-sleepiness and fatigue during highly automated driving[J]. Accident Analysis & Prevention, 2019, 126: 70-84. |
| 61 | Jamson A H, Merat N, Carsten O M J, et al. Behavioural changes in drivers experiencing highly-automated vehicle control in varying traffic conditions[J]. Transportation Research Part C: Emerging Technologies, 2013, 30: 116-125. |
| 62 | Jarosch O, Bellem H, Bengler K. Effects of task-induced fatigue in prolonged conditional automated driving[J]. Human Factors, 2019, 61(7): 1186-1199. |
| 63 | Gonçalves J, Happee R, Bengler K. Drowsiness in conditional automation: proneness, diagnosis and driving performance effects[C]∥2016 IEEE 19th International Conference on Intelligent Transportation Systems, Rio de Janeiro, Brazil, 2016: 873-878. |
| 64 | Neubauer C, Matthews G, Saxby D. Fatigue in the automated vehicle: do games and conversation distract or energize the driver?[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2014, 58(1): 2053-2057. |
| 65 | Tassi P, Muzet A. Sleep inertia[J]. Sleep Medicine Reviews, 2000, 4(4): 341-353. |
| 66 | Wörle J, Metz B, Othersen I, et al. Sleep in highly automated driving: takeover performance after waking up[J]. Accident Analysis & Prevention, 2020, 144: 105617. |
| 67 | Wörle J, Metz B, Baumann M. Sleep inertia in automated driving: post-sleep take-over and driving performance[J]. Accident Analysis & Prevention, 2021, 150: No.105918. |
| 68 | Jeon M, Walker B N, Yim J B. Effects of specific emotions on subjective judgment, driving performance, and perceived workload[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 24: 197-209. |
| 69 | Jallais C, Gabaude C, Paire-Ficout L. When emotions disturb the localization of road elements: effects of anger and sadness[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2014, 23: 125-132. |
| 70 | Sanghavi H K. Exploring the influence of anger on takeover performance in semi-automated vehicles[D]. Blacksburg: Virginia Tech, 2020. |
| 71 | Du N, Ayoub J, Zhou F, et al. Examining the impacts of drivers´ emotions on takeover readiness and performance in highly automated driving[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2019, 63(1): 2076-2077. |
| 72 | Wiedemann K, Naujoks F, Wörle J, et al. Effect of different alcohol levels on take-over performance in conditionally automated driving[J]. Accident Analysis & Prevention, 2018, 115: 89-97. |
| 73 | Li S, Blythe P, Guo W, et al. Evaluation of the effects of age-friendly human-machine interfaces on the driver´s takeover performance in highly automated vehicles[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 67: 78-100. |
| 74 | Ono S, Sasaki H, Kumon H, et al. Improvement of driver active interventions during automated driving by displaying trajectory pointers-a driving simulator study[J]. Traffic Injury Prevention, 2019, 20(s1): 152-156. |
| 75 | Cohen L G, Katzman N, Borowsky A, et al. Directional tactile alerts for take-over requests in highly-automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 65: 217-226. |
| 76 | Walch M, Lange K, Baumann M, et al. Autonomous driving: investigating the feasibility of car-driver handover assistance[C]∥Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New York, USA, 2015: 11-18. |
| 77 | Hong S, Yang J H. Effect of multimodal takeover request issued through A-pillar LED light, earcon, speech message, and haptic seat in conditionally automated driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 89: 488-500. |
| 78 | Heo J, Lee H, Yoon S, et al. Responses to take-over request in autonomous vehicles: effects of environmental conditions and cues[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23573-23582. |
| 79 | Ma S, Zhang W, Yang Z, et al. Take over gradually in conditional automated driving: the effect of two-stage warning systems on situation awareness, driving stress, takeover performance, and acceptance[J]. International Journal of Human–Computer Interaction, 2021, 37(4): 352-362. |
| 80 | Li S, Blythe P, Guo W, et al. Investigation of older drivers´ requirements of the human-machine interaction in highly automated vehicles[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62: 546-563. |
| 81 | 工业和信息化部 公安部 住房和城乡建设部 交通运输部. 关于开展智能网联汽车准入和上路通行试点工作的通知[EB/OL]. [2023-09-27]. . |
| 82 | Wu Y, Kihara K, Takeda Y, et al. Eye movements predict driver reaction time to takeover request in automated driving: a real-vehicle study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81: 355-363. |
| 83 | Ayoub J, Du N, Yang X J, et al. Predicting driver takeover time in conditionally automated driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9580-9589. |
| 84 | Pakdamanian E, Sheng S, Baee S, et al. DeepTake: prediction of driver takeover behavior using multimodal data[C]∥Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, USA, 2021: 1-14. |
| 85 | 林庆峰, 王兆杰, 鲁光泉. L3级自动驾驶汽车的接管安全性评价模型[J]. 汽车工程, 2019, 41(11): 1258-1264. |
| Lin Qing-feng, Wang Zhao-jie, Lu Guang-quan. Takeover safety evaluation model for level 3 automated vehicles[J]. Automotive Engineering, 2019, 41(11): 1258-1264. | |
| 86 | Li Q, Hou L, Wang Z, et al. Drivers´ visual-distracted take-over performance model and its application on adaptive adjustment of time budget[J]. Accident Analysis & Prevention, 2021, 154: 106099. |
| 87 | Du N, Zhou F, Pulver E M, et al. Predicting driver takeover performance in conditionally automated driving[J]. Accident Analysis & Prevention, 2020, 148: 105748. |
| 88 | 王秋鸿. 面向交通安全的智能汽车安全驾驶管理对策研究[J]. 道路交通管理, 2022, 2022(2): 34-37. |
| Wang Qiu-hong. Research on safety driving management countermeasures of intelligent vehicles oriented to traffic safety[J]. Road Traffic Management, 2022, 2022(2): 34-37. | |
| 89 | Zhou H, Itoh M, Kitazaki S. How does explanation-based knowledge influence driver take-over in conditional driving automation?[J]. IEEE Transactions on Human-Machine Systems, 2021, 51(3): 188-197. |
| 90 | Zhou H, Kamijo K, Itoh M, et al. Effects of explanation-based knowledge regarding system functions and driver´s roles on driver takeover during conditionally automated driving: a test track study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 77: 1-9. |
| 91 | Krampell M, Solís M I, Hjälmdahl M. Driving automation state-of-mind: using training to instigate rapid mental model development[J]. Applied Ergonomics, 2020, 83:No. 102986. |
| 92 | Feinauer S, Schuller L, Groh I, et al. The potential of gamification for user education in partial and conditional driving automation: a driving simulator study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 90: 252-268. |
| 93 | Ebnali M, Hulme K, Ebnali H A, et al. How does training effect users' attitudes and skills needed for highly automated driving?[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66: 184-195. |
| 94 | Sahaï A, Barré J, Bueno M. Urgent and non-urgent takeovers during conditional automated driving on public roads: the impact of different training programmes[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2021, 81: 130-143. |
| [1] | 王长帅,徐铖铖,任卫林,彭畅,佟昊. 自动驾驶接管过程中驾驶能力恢复状态对交通流振荡特性的影响[J]. 吉林大学学报(工学版), 2025, 55(1): 150-161. |
| [2] | 张娜,陈峰,王剑坡,朱亚迪. 基于时空序列相似性的城轨乘客出行模式识别[J]. 吉林大学学报(工学版), 2024, 54(9): 2588-2599. |
| [3] | 周锡浈,宫贺,李敦敦,季彦婕,严杰. 建成环境对路内停车泊位使用率的非线性影响模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2520-2530. |
| [4] | 严利鑫,曾涛,贺宜,郭军华,胡鑫辉. 共驾型智能车辆人机接管行为序列编码与解析[J]. 吉林大学学报(工学版), 2024, 54(9): 2547-2556. |
| [5] | 曲昭伟,李霖,陈永恒,吴场建. 长区间掉头车辆特性分析及其安全评价[J]. 吉林大学学报(工学版), 2024, 54(8): 2206-2213. |
| [6] | 何永明,权聪,魏堃,冯佳,万亚楠,陈世升. 超高速公路车路协同路侧单元感知融合方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1923-1934. |
| [7] | 程国柱,盛林,王浩宇,冯天军. 考虑右转车二次冲突的信号交叉口行人过街安全评价方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1903-1912. |
| [8] | 秦雅琴,钱正富,谢济铭. 协同换道避障模型和轨迹数据驱动的车辆协同避障策略[J]. 吉林大学学报(工学版), 2024, 54(5): 1311-1322. |
| [9] | 张明业,杨敏,黎彧,黄世玉,李清韵. 考虑有序充电策略的多车型电动公交调度优化[J]. 吉林大学学报(工学版), 2024, 54(5): 1293-1301. |
| [10] | 马潇驰,陆建. 基于基因表达式编程的高架道路事故实时预测[J]. 吉林大学学报(工学版), 2024, 54(3): 719-726. |
| [11] | 严利鑫,冯进培,郭军华,龚毅轲. 不同险态情景下共驾型智能车辆接管行为特征分析[J]. 吉林大学学报(工学版), 2024, 54(3): 683-691. |
| [12] | 曲大义,张可琨,顾原,王韬,宋慧,戴守晨. 自动驾驶车辆换道决策行为分析及分子动力学建模[J]. 吉林大学学报(工学版), 2024, 54(3): 700-710. |
| [13] | 涂辉招,王万锦,乔鹏,郭静秋,鹿畅,吴海飞. 自动驾驶卡车路测安全员接管干预行为解析[J]. 吉林大学学报(工学版), 2024, 54(3): 727-740. |
| [14] | 李德林,陈俊先,王永岗,王露,沈照庆. 基于潜在类别模型的急陡弯路段驾驶行为辨析[J]. 吉林大学学报(工学版), 2024, 54(12): 3526-3533. |
| [15] | 顾明臣,熊慧媛,刘增军,罗清玉,刘宏. 融合多头注意力机制的货车载重估计模型[J]. 吉林大学学报(工学版), 2024, 54(10): 2771-2780. |
|
||