吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (3): 1015-1027.
• 计算机科学与技术 • 上一篇
De-qiang CHENG1(
),Gui LIU1,Qi-qi KOU3,Jian-ying ZHANG1,He JIANG1,2(
)
摘要:
针对高性能图像超分辨网络通常参数量庞大的问题,提出了一种轻量级模型。首先,集成了3种大核注意力,即双路大核注意力、大核像素注意力和大核通道注意力,旨在扩大模型感受野,建立像素的长程依赖性。其次,引入了自适应注意力融合机制,增强了特征的表征能力,提升了模型性能。实验证明:本文模型在视觉感知和量化测试上表现优异。在Urban100数据集上,与目前流行的ARRFN算法相比,4倍重建结果的峰值信噪比均值提高了0.25 dB。重建图像视觉效果更逼真、纹理更为清晰和自然,充分证明了该算法的有效性。
中图分类号:
| 1 | Cheng D Q, Chen L L, Lv C, et al. Light-guided and cross-fusion U-Net for anti-illumination image super-resolution[J]. IEEE Transaction on Circuits and Systems for Video Technology, 2022, 32(12): 8436-8449. |
| 2 | Jebkins W K, Mather B C, Jr D C M. Nearest neighbor and generalized inverse distance interpolation for fourier domain image reconstruction[C]∥Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Tampa, USA, 1985:1069-1072. |
| 3 | Blu T, Thevenaz P, Unser M. Linear interpolation revitalized[J]. IEEE Trans Image Process, 2004, 13(5): 710-719. |
| 4 | Lin C, Shen M, Chang H, et al. The efficient VLSI design of BICUBIC convolution interpolation for digital image processing[C]∥Proceedings of the International Symposium on Circuitsand Systems (ISCAS), Seattle, USA, 2008:480-483. |
| 5 | Dai S, Han M, Xu W,et al. Soft-cuts: a soft edge smoothness prior for color image super-resolution[J]. IEEE Transactions on Image Processing, 2009, 18(5): 969-981. |
| 6 | Sun J, Xu Z, Shun H Y. Image super-resolution using gradient profile prior[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Reco Anchorage, Anchorage, AK, USA, 2008: 1-8. |
| 7 | Yan Q, Xu Y, Yang X, et al. Single image super resolution based on gradient profile sharpness[J]. IEEE Transactions on Image Processing, 2015,24(10):3187-3202 . |
| 8 | iang H J, Mujtaba A S A D, Liu J J, et al. Single image detail enhancement via metropolis theorem[J]. Multimedia Tools and Applications,2024, 83: 36329-36353. |
| 9 | 程德强, 郭昕, 陈亮亮, 等. 多通道递归残差网络的图像超分辨率重建[J].中国图象图形学报, 2021, 26(3): 605-618. |
| Cheng De-qiang, Guo Xin, Chen Liang-liang, et al. Image super resolution reconstruction by multi-channel recursive residual networks[J]. Journal of Image and Graphics, 2021, 26(3): 605-618. | |
| 10 | Dong C, Loy C C, He K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307. |
| 11 | Shi W, Caballero J, Huszár F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016:1874-1883. |
| 12 | Lim B, Son S, Kim H,et al. Enhanced deep residual networks for single image super-resolution[C]∥IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu,USA, 2016:1132-1140. |
| 13 | 郭继昌, 吴洁, 郭春乐, 等. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报: 工学版,2019, 49(5): 1726-1734. |
| Guo Ji-chang, Wu Jie, Guo Chun-le, et al.Image super-resolution reconstruction based on residual-connected convolutional neural networks[J]. Journal of Jilin University(Engineering and Technology Edition,2019, 49(5): 1726-1734. | |
| 14 | Zhang Y, Li K. Image super-resolution using very deep residual channel attention networks[C]∥Proceedings of the European Conference on Computer Vision, Munich Germany, 2018: 286-301. |
| 15 | Niu B, Wen W L, Ren W Q,et al. Single image super-resolution via a holistic attention network[C]∥ 2020 European Conference on Computer Vision (ECCV), Glasgow, USA, 2020:191-207. |
| 16 | Vaswan A, Shazeer N, Parmar, et al. Attention is all you need[J/OL].[2023-09-15]. |
| 17 | Liang J Y, Cao J Z, Sun G L,et al. Image restoration using swin transformer[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 1833-1844. |
| 18 | Lu Z S, Li J C, Liu H, et al. Transformer for single image super-resolution[C]∥Proc IEEE/CVF Conf Comput Vis Pattern Recognit Workshops, New Orleans, USA, 2022: 456-465. |
| 19 | Kou Q Q, Cheng D Q, Zhang H et al. Single Image super resolution via multi-attention fusion recurrent network[J]. IEEE Access,2023(11): 98653-98665. |
| 20 | Wang Z, Gao G, Li J,et al. Lightweight image super-resolution with multi-scale feature interaction network[C]∥IEEE International Conference on Multimedia and Expo, Shenzhen, China, 2021: No.9428136. |
| 21 | Lan R, Sun L, Liu Z,et al. MADNet:a fast and lightweight network for single-image super resolution[J]. IEEE Transactions on Cybernetics, 2021,51(3):1443-1453. |
| 22 | Guo M H, Lu C Z, Liu Z N,et al. Visual attention network[J/OL].[2023-09-18]. |
| 23 | Jie H, Li S, Samuel A, et al. Squeeze-and-excita⁃tion networks[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni⁃tion, Wellington, New Zealand, 2018: 7132-7141. |
| 24 | Bevilacqua M, Roumy A, Guillemot C, et al. Low-complexity single image super-resolution based on nonnegative neighbour embedding[C]∥British Machine Vision Conference, Oxford,UK, 2012:1-10. |
| 25 | Zeyde R, Elad M, Protter M. On single image scale-up using sparse-representations[C]∥International Conference on Curves and Surfaces,Avignon, France, 2010: 711-730. |
| 26 | Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016:1646-1654. |
| 27 | Huang J B, Singh A, Ahuja N. Single image super-resolution from transformed self-exemplars[C]∥IEEE Conference on Computer Vision and Pattern Recognition,Boston, USA, 2015:5197-5206. |
| 28 | Dong C, Loy C C, Tang X. Accelerating the super-resolution convolutional neural network[C]∥European Conference on Computer Vision,Amsterdam, Holland, 2016:391-407. |
| 29 | Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646-1654. |
| 30 | Kim J, Lee J K, Lee K M. Deeply-recursive convolutional network for image super-resolution[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA,2016:1637-1645. |
| 31 | Ahh N, Kang B, Sohn K A. Fast, accurate, and lightweight super-resolution with cascading residual network[C]∥European Conference on Computer Vision(ECCV), Munich, Germany, 2018: 256-272. |
| 32 | Hui Z, Gao X, Yang Y, et al. Lightweight image super-resolution with information multi-distillation network[C]∥Proceedings of the 27th ACM International Conference on Multimedia, Xi'an, China, 2019: 2024-2032. |
| 33 | Wang X H, Wang Q, Zhao Y Z, et al. Lightweight single-image super-resolution network with attentive auxiliary feature learning[C]∥Asian Conference on Computer Vision(ACCV),Kyoto, Japan, 2020: 3023-3041. |
| 34 | Du Z C, Liu D, Liu J, et al. Fast and memory-efficient network towards efficient image super-resolution[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,New Orleans, USA, 2022 :853-862. |
| 35 | Yan Y, Xu X, Chen W, et al. Lightweight attended multi-scale residual network for single image super-resolution[J]. IEEE Access, 2021, 9: 52202-52212. |
| 36 | Qin J, Zhang R. Lightweight single image super-resolution with attentive residual refinement network[J].Neurocomputing, 2022, 500: 846-855. |
| 37 | Gao G W, Wang Z X, Li J C, et al. Lightweight bimodal network for single-image super-resolution via symmetric CNN and recursive transformer[C]∥International Joint Conference on Artificial Intelligence,Shenzhen, China, 2022: 913-919. |
| 38 | Choi H, Lee J, Yang J. N-Gram in swin transformers for efficient lightweight image super-resolution[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canadian, 2023: 2071-2081. |
| 39 | Jie H, Li S, Samuel A, et al. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Wellington, New Zealand, 2018: 7132-7141. |
| [1] | 董华松,连远锋. 海量数字媒体视频无损转码重压缩的轻量化检测算法[J]. 吉林大学学报(工学版), 2025, 55(2): 741-747. |
| [2] | 才华,郑延阳,付强,王晟宇,王伟刚,马智勇. 基于多尺度候选融合与优化的三维目标检测算法[J]. 吉林大学学报(工学版), 2025, 55(2): 709-721. |
| [3] | 张曦,库少平. 基于生成对抗网络的人脸超分辨率重建方法[J]. 吉林大学学报(工学版), 2025, 55(1): 333-338. |
| [4] | 朱圣杰,王宣,徐芳,彭佳琦,王远超. 机载广域遥感图像的尺度归一化目标检测方法[J]. 吉林大学学报(工学版), 2024, 54(8): 2329-2337. |
| [5] | 才华,寇婷婷,杨依宁,马智勇,王伟刚,孙俊喜. 基于轨迹优化的三维车辆多目标跟踪[J]. 吉林大学学报(工学版), 2024, 54(8): 2338-2347. |
| [6] | 郭昕刚,何颖晨,程超. 抗噪声的分步式图像超分辨率重构算法[J]. 吉林大学学报(工学版), 2024, 54(7): 2063-2071. |
| [7] | 孙铭会,薛浩,金玉波,曲卫东,秦贵和. 联合时空注意力的视频显著性预测[J]. 吉林大学学报(工学版), 2024, 54(6): 1767-1776. |
| [8] | 王殿伟,张池,房杰,许志杰. 基于高分辨率孪生网络的无人机目标跟踪算法[J]. 吉林大学学报(工学版), 2024, 54(5): 1426-1434. |
| [9] | 王宇,赵凯. 基于亚像素定位的人体姿态热图后处理[J]. 吉林大学学报(工学版), 2024, 54(5): 1385-1392. |
| [10] | 张自超,陈建. 基于双目仿鹰眼视觉与超分辨的果园三维点云重建[J]. 吉林大学学报(工学版), 2024, 54(5): 1469-1481. |
| [11] | 高云龙,任明,吴川,高文. 基于注意力机制改进的无锚框舰船检测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1407-1416. |
| [12] | 毛琳,苏宏阳,杨大伟. 时间显著注意力孪生跟踪网络[J]. 吉林大学学报(工学版), 2024, 54(11): 3327-3337. |
| [13] | 孙文财,胡旭歌,杨志发,孟繁雨,孙微. 融合GPNet与图像多尺度特性的红外-可见光道路目标检测优化方法[J]. 吉林大学学报(工学版), 2024, 54(10): 2799-2806. |
| [14] | 李本怀,刘艳文,王璐,陈雪乾,左文杰. 吸能与压溃位移约束下的轨道车辆前端结构抗撞性优化[J]. 吉林大学学报(工学版), 2023, 53(4): 982-988. |
| [15] | 刘晶红,邓安平,陈琪琪,彭佳琦,左羽佳. 基于多重注意力机制的无锚框目标跟踪算法[J]. 吉林大学学报(工学版), 2023, 53(12): 3518-3528. |
|
||