吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (4): 1356-1362.doi: 10.13229/j.cnki.jdxbgxb.20240402

• 交通运输工程·土木工程 • 上一篇    下一篇

支撑失效下预应力钢板带-砖砌体组合墙墙变形特性

郝卫东(),李鉴奇   

  1. 河北工程大学 建筑与艺术学院,河北 邯郸 056000
  • 收稿日期:2024-04-06 出版日期:2025-04-01 发布日期:2025-06-19
  • 作者简介:郝卫东(1968-),男,副教授.研究方向:建筑设计及理论. E-mail: 986328101@qq.com
  • 基金资助:
    河北省社会科学基金项目(HB20SH015)

Deformation characteristics of prestressed steel plate-brick masonry composite wall under support failure

Wei-dong HAO(),Jian-qi LI   

  1. School of Architecture and Art,Hebei University of Engineering,Handan 056000,China
  • Received:2024-04-06 Online:2025-04-01 Published:2025-06-19

摘要:

为深入探究预应力钢板带加固技术在提升墙体承载力和降低变形程度方面的应用效果,探讨了支撑失效状态下预应力钢板带-砖砌体组合墙在施加荷载时的变形特性。在试验中,设计7个试件,均利用预应力钢板带实施加固,各自的加固情况不同。在试件制作中,实施底梁的浇筑后制作砖砌体墙,浇筑顶梁后对表面实施抹平处理,与底梁和砖砌体墙形成整体结构。将养护后的试件运至实验室中实施预应力钢板带加固。纵向钢板带的下料长度与墙体的高度保持一致。若需施加竖向预压应力,则下料长度会相应增加2或4 mm。横向钢板带与墙体的实际宽度相匹配。布设试验仪器与应变片并开始加载,直至组合墙体的支撑功能失效,停止试验加载。结果表明,墙体预应力钢板带的加固性能与墙体承载能力之间存在正相关关系;在墙体支撑失效前,曲线出现降低趋势,随后墙体支撑失效;较强加固性能的预应力钢板带可以降低墙体自身的应变值,即降低墙体自身的变形程度。预应力钢板带的应用能够显著增强墙体的整体刚度和稳定性。

关键词: 支撑失效, 预应力钢板带, 底梁, 顶梁, 砖砌体墙, 组合墙, 墙变形特性

Abstract:

To investigate the application effect of prestressed steel plate strip reinforcement technology in improving the load-bearing capacity of walls and reducing the degree of deformation, the deformation characteristics of prestressed steel plate strip brick masonry composite walls under applied loads were investigated by considering the failure state of supports.In the experiment, 7 specimens were carefully designed and reinforced with prestressed steel plates, each with different reinforcement situations. In the production of specimens, after pouring the bottom beam, a brick masonry wall is made. After pouring the top beam, the surface is smoothed to form an overall structure with the bottom beam and brick masonry wall. Transport the cured specimens to the laboratory for reinforcement with prestressed steel plates. The cutting length of the longitudinal steel plate strip should be consistent with the height of the wall. If vertical preloading stress is required, the cutting length will correspondingly increase by 2 or 4 mm. The horizontal steel plate strip matches the actual width of the wall. Install testing instruments and strain gauges, start loading until the support function of the composite wall fails, and stop the test loading.The results demonstrate a positive correlation between the reinforcement performance of prestressed steel plate strips on walls and the load-bearing capacity of the walls. Before the wall support fails, the curve shows a decreasing trend, followed by the failure of the wall support. A prestressed steel plate strip with strong reinforcement performance can reduce the strain value of the wall itself, that is, reduce the degree of deformation of the wall itself. The application of prestressed steel plate strips can significantly enhance the overall stiffness and stability of walls.

Key words: support failure, pre stressed steel plate strip, bottom beam, top beam, brick masonry walls, composite wall, wall deformation characteristics

中图分类号: 

  • TU398.9

图1

砖砌体墙立面图"

图2

砖砌体墙的砌筑效果"

图3

应变片的布设序号"

表1

使用的试验仪器"

序号试验仪器名称型号生产厂家
1位移计D55欧尔博自动化科技有限公司
22 000 kN液压千斤顶EFSW588南方液压工具制造有限公司
3静态应变仪RG1557一洋应振测试技术有限公司
4静态伺服液压控制台XDW784一洋应振测试技术有限公司

图4

试件墙体的荷载-位移曲线"

图5

应力测试结果"

1 彭志明, 陈忠范, 徐志峰, 等. 不同截面冷弯型钢-泡沫混凝土组合墙体抗震性能[J]. 东南大学学报:自然科学版, 2023, 53(5): 783-793.
Peng Zhi-ming, Chen Zhong-fan, Xu Zhi-feng, et al. Seismic performance of cold-formed steel-foam concrete composite walls with different cross-sections[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(5): 783-793.
2 宋卓华, 张克胜, 翟浩博, 等.软土地层深基坑阳角部位地下连续墙变形特性分析[J]. 建筑结构, 2022, 52():2491-2496.
Song Zhuo-hua, Zhang Ke-sheng, Zhai Hao-bo, et al.Deformation characteristics of diaphragm walls at convex corners in deep excavations within soft soil strata[J]. Building Structure, 2022, 52(Sup.1): 2491-2496.
3 司豆豆, 潘钻峰, 曾滨, 等.爆炸荷载作用下大跨预应力混凝土框架动力响应分析[J]. 爆炸与冲击, 2023, 43(11):3-13.
Si Dou-dou, Pan Zuan-feng, Zeng Bin, et al.Dynamic response analysis of long-span prestressed concrete frames under blast loading[J]. Explosion and Shock Waves, 2023, 43(11): 3-13.
4 王东升, 陈贺, 李俭涛, 等.基于DIC的预应力节段拼装桥墩变形成分分析[J].沈阳建筑大学学报:自然科学版, 2022, 38(5):821-829.
Wang Dong-sheng, Chen He, Li Jian-tao, et al.Deformation component analysis of prestressed segmental bridge piers based on DIC[J]. Journal of Shenyang Jianzhu University(Natural Science Edition), 2022, 38(5): 821-829.
5 Tripathi L, Behera B K. Comparative analysis of aluminium core honeycomb with 3D woven Kevlar honeycomb composite[J]. Materials Science and Technology, 2023, 39(14): 1697-1708.
6 刘小良, 秘金卫, 陈佑童, 等. 土岩组合深基坑围护结构受力与变形特性分析:以青岛海天中心深基坑为例[J].科学技术与工程, 2023, 23(6):2549-2557.
Liu Xiao-liang, Mi Jin-wei, Chen You-tong, et al.Mechanical and deformation characteristics of retaining structures in soil-rock composite deep excavations: a case study of Qingdao Haitian Center deep excavation[J]. Science Technology and Engineering, 2023, 23(6): 2549-2557.
7 成怡冲, 张日红, 王奎华, 等. 考虑桩-桩剪切作用的连锁墙时空变形分析[J]. 铁道科学与工程学报, 2023, 20(10): 3768-3778.
Cheng Yi-chong, Zhang Ri-hong, Wang Kui-hua, et al.Spatiotemporal deformation analysis of interlocking walls considering pile-to-pile shear effects[J]. Journal of Railway Science and Engineering, 2023, 20(10): 3768-3778.
8 Senthilkumar R, Karunakaran P, Chandru U. Progress and challenges in double skin steel-concrete composite walls: a review[J]. Innovative Infrastructure Solutions, 2023, 8(1): 1-74.
9 马书文, 卢谅, 王宗建, 等. 落石冲击下预应力加筋土路堤变形及荷载传递机制[J]. 岩土力学, 2023, 44(3): 799-809.
Ma Shu-wen, Lu Liang, Wang Zong-jian, et al. Deformation and load transfer mechanism of prestressed reinforced earth embankment under rockfall impact[J]. Rock and Soil Mechanics, 2023, 44(3): 799-809.
10 Barkhordari M S. A modeling strategy for predicting the response of steel plate-concrete composite walls[J]. Journal of Rehabilitation in Civil Engineering, 2023, 11(2): 43-63.
11 刘冲. 新元煤矿软岩段井筒破坏机理及综合修复技术[J]. 煤炭工程, 2022, 54(12): 37-43.
Liu Chong. Failure mechanism and comprehensive rehabilitation technology of shaft in soft rock strata of Xinyuan Coal Mine[J]. Coal Engineering, 2022, 54(12): 37-43.
12 涂正楠, 吴羿君, 冯君, 等.基于FEM-SPH耦合方法的挡土墙墙后土体变形破损研究[J]. 山地学报, 2023, 41(2): 243-253.
Tu Zheng-nan, Wu Yi-jun, Feng Jun, et al.Study on deformation and failure of backfill soil behind retaining wall based on FEM-SPH coupling method.[J]. Journal of Mountain Science, 2023, 41(2): 243-253.
13 张良, 吴边, 张凤亮, 等.波形钢板加强的钢管混凝土组合剪力墙抗震性能分析[J]. 工业建筑, 2022, 52(10): 146-155.
Zhang Liang, Wu Bian, Zhang Feng-liang, et al.Seismic performance analysis of concrete-filled steel tube composite shear walls reinforced with corrugated steel plates[J]. Industrial Construction, 2022, 52(10): 146-155.
14 冷伍明, 姚康, 门小雄, 等.考虑工程桩效应的滨海深基坑变形特性分析[J]. 铁道科学与工程学报, 2023, 20(4):1347-1358.
Leng Wu-ming, Yao Kang, Xiao-xiong Men, et al.Analysis of deformation characteristics of coastal deep foundation pits considering engineering pile effects[J]. Journal of Railway Science and Engineering, 2023, 20(4): 1347-1358.
15 向朱锋, 徐金明. 悬挂式止水帷幕条件下深基坑开挖变形特性研究[J]. 水文地质工程地质, 2023, 50(5): 96-106.
Xiang Zhu-feng, Xu Jin-ming. Study on deformation characteristics of deep foundation pit excavation under suspended waterproof curtain conditions[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 96-106.
16 曲烽豪, 尹世平, 王飞, 等.纤维编织网增强混凝土双面加固不同损伤程度砌体墙抗震性能试验研究[J]. 建筑结构学报, 2023, 44(): 83-91.
Qu Feng-hao, Yin Shi-ping, Wang Fei, et al. Experimental study on seismic performance of masonry walls with different damage levels strengthened by textile-reinforced concrete on both sides[J]. Journal of Building Structures, 2023, 44(Sup.1): 83-91.
[1] 肖林,魏欢博,卫星,康志锐. 钢混组合梁栓钉锈胀下混凝土板开裂行为数值分析[J]. 吉林大学学报(工学版), 2024, 54(7): 1958-1965.
[2] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[3] 匡亚川,陈立斌,李超举,贺宇豪. 栓钉剪力连接件力学性能分析[J]. 吉林大学学报(工学版), 2023, 53(2): 538-546.
[4] 陈俊,王韶纤,胥卉,莫端泉,霍静思,邓旭华. 负弯矩作用下可拆卸预制装配式组合梁力学性能试验[J]. 吉林大学学报(工学版), 2022, 52(3): 604-614.
[5] 周靖,黎亚军,赵卫锋,罗宗健,补国斌. 胶合竹板-钢管约束收尘石粉混凝土柱的偏压性能[J]. 吉林大学学报(工学版), 2021, 51(6): 2096-2107.
[6] 刁延松,郭荡,屠康,焦圣伦,刘芸,刘秀丽. 新型异形钢管混凝土柱⁃钢梁节点抗震性能试验[J]. 吉林大学学报(工学版), 2021, 51(5): 1724-1733.
[7] 石永久, 杨璐, 王元清, 李秋喆. 简支深肋组合扁梁抗弯刚度[J]. 吉林大学学报(工学版), 2010, 40(06): 1550-1555.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[5] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .