吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (1): 198-208.doi: 10.13229/j.cnki.jdxbgxb.20220268

• 交通运输工程·土木工程 • 上一篇    

低温环境下栓钉环焊缝焊接残余应力场数值模拟

卫星(),高亚杰,康志锐,刘宇辰,赵骏铭,肖林()   

  1. 西南交通大学 土木工程学院,成都 610031
  • 收稿日期:2022-03-20 出版日期:2024-01-30 发布日期:2024-03-28
  • 通讯作者: 肖林 E-mail:we_star@swjtu.edu.cn;xiaolin@swjtu.edu.cn
  • 作者简介:卫星(1976-),男,教授,博士. 研究方向:钢混组合结构桥梁力学行为. E-mail:we_star@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52078424);蜀道投资集团科技计划项目(SRIG2020GG0001);中铁第五勘察设计院集团有限公司科技研究计划项目(T5Y2020-B03)

Numerical simulation of residual stress field of stud girth weld in low temperature environment

Xing WEI(),Ya-jie GAO,Zhi-rui KANG,Yu-chen LIU,Jun-ming ZHAO,Lin XIAO()   

  1. School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China
  • Received:2022-03-20 Online:2024-01-30 Published:2024-03-28
  • Contact: Lin XIAO E-mail:we_star@swjtu.edu.cn;xiaolin@swjtu.edu.cn

摘要:

为了研究低温环境对栓钉焊接残余应力分布规律的影响,通过ABAQUS建立栓钉模型进行数值模拟,考虑了5个不同的温度进行有限元热-固耦合分析。结果表明:Mises应力、径向残余应力最大值均位于焊缝附近10 mm处,随着距离的增加迅速衰减;环向残余应力在焊缝附近为残余拉应力,远离焊缝处为残余压应力,最大值位于焊缝中心;低温会提高焊接残余应力,Mises应力集中表现在焊缝中心,环向残余应力集中表现在焊缝附近,径向残余应力在焊缝中心及焊缝附近均有所增加。低温对提高焊接残余拉应力影响明显,对残余压应力影响不大。

关键词: 桥梁工程, 栓钉, 低温, 温度场, 残余应力, 数值模拟

Abstract:

In order to study the influence of low temperature environment on the distribution law of welding residual stress, a stud model through ABAQUS for numerical simulation was established, and 5 different temperatures for finite element thermal-solid coupling analysis were considered. The results show that the maximum values of mises stress and radial residual stress are both located at 10 mm near the weld, and decay rapidly with the increase of distance; the hoop residual stress is residual tensile stress near the weld, and is compressive stress away from the weld, and the maximum value is located in the center of the weld; low temperature will increase the residual stress of the weld, the mises stress is concentrated in the center of the weld, the hoop residual stress is concentrated near the weld, and the radial residual stress increases both in the center of the weld and near the weld. The low temperature has a significant effect on increasing the residual tensile stress of welding, but has little effect on the residual compressive stress.

Key words: bridge engineering, stud, low temperature, temperature field, residual stress, numerical simulation

中图分类号: 

  • TU398.9

图1

模型约束条件"

图2

高斯热源模型"

表1

Q345q材料热物理性能参数"

温度/

导热系数/

W·(m·)-1

比热容/

[J·(kg?-1

密度/

(kg·m-3

-60514327850
-40504377850
-20504417850
0504467850
20504507850
100494657850
200484907850
300475107850
500455607850
700416007850
1000287407650
1300307007350
1500306707350

表2

Q345q材料力学特性参数"

温度/弹性模量/GPa泊松比μ屈服应力/MPa线膨胀系数/10-5
-602090.33851.14
-402070.33741.15
-202010.33671.16
02020.33661.30
202000.33451.30
1001970.33321.50
2001910.33081.50
3001860.32881.60
5001450.312191.70
700720.31831.70
100019.50.36231.70
13009.50.3751.70
15000.10.3911.70

图3

20 ℃下随时间变化的温度场云图"

图4

2000 s时不同温度下的温度场云图"

图5

不同温度冷却至环境温度的Mises等效应力云图(Pa)"

图6

焊接残余应力最大值随环境温度变化图"

图7

不同环境温度焊接残余应力与到焊缝中心距离关系图"

图8

焊缝中心点残余应力沿板厚方向变化图"

图9

不同温度冷却至环境温度的径向残余应力云图(Pa)"

图10

径向残余应力最大值随环境温度变化图"

图11

不同环境温度下径向残余应力与到焊缝中心距离关系图"

图12

不同温度冷却至环境温度的环向残余应力云图(Pa)"

图13

环向残余应力最大值随环境温度变化图"

图14

不同环境温度下环向残余应力与到焊缝中心距离关系图"

1 卫星, 肖林, 温宗意, 等. 钢混组合结构桥梁2020年度研究进展[J]. 土木与环境工程学报, 2021, 43(): 107-119.
Wei Xing, Xiao Lin, Wen Zong-yi, et al. Research progress of steel-concrete composite bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(Sup.1): 107-119.
2 王天鹏, 张建仁, 肖宏彬. 低温环境下桥梁用结构钢疲劳寿命估算方法[J]. 自然灾害学报, 2020, 29(1): 64-71.
Wang Tian-peng, Zhang Jian-ren, Xiao Hong-bin. Estimation method of fatigue life of bridge struct-ural steel in low temperature environment[J]. Journal of Natural Disasters, 2020, 29(1): 64-71.
3 王元清, 廖小伟, 贾单锋, 等. 钢结构的低温疲劳性能研究进展综述[J]. 建筑钢结构进展, 2018, 20(1): 1-11.
Wang Yuan-qing, Liao Xiao-wei, Jia Shan-feng, et al. A review of research progress on low temperature fatigue properties of steel structures [J]. Progress in Building Steel Structures, 2018, 20(1): 1-11.
4 张玉玲. 低温环境下铁路钢桥疲劳断裂性能研究[J]. 中国铁道科学, 2008(1): 22-25.
Zhang Yu-ling. Research on fatigue fracture performance of railway steel bridge under low temperature environment[J]. China Railway Science, 2008(1): 22-25.
5 刘昱含. 钢板混凝土组合结构中栓钉焊接残余应力测定与影响分析[D]. 上海:上海交通大学船舶海洋与建筑工程学院, 2019.
Liu Yu-han. Determination and influence analysis of stud welding residual stress in steel plate-concrete composite structure[D]. Shanghai: School of Ship, Ocean and Architectural Engineerring, Shanghai Jiaotong University, 2019.
6 焦晋峰, 贾朋朋, 贾玥, 等. 钢管-焊接空心球节点焊接残余应力数值模拟及试验研究[J]. 广西大学学报:自然科学版, 2020, 45(6): 1259-1266.
Jiao Jin-feng, Jia Peng-peng, Jia Yue, et al. Numerical simulation and experimental research on welding residual stress of steel pipe-welded hollow sphere joints[J]. Journal of Guangxi University(Natural Science Edition), 2020, 45(6): 1259-1266.
7 Barsoum Z, Barsoum I. Residual stress effects on fatigue life of welded structures using LEFM[J]. Engineering Failure Analysis, 2009, 16: 449-467.
8 Barsoum Zuheir. Residual stress analysis and fatigue assessment of welded steel structures[D]. Stockholm,Sweden: KungligaTekniska Högskolan, 2008.
9 Obeid O, Alfano G, Bahai H, et al. Numerical simulation of thermal and residual stress fields induced by lined pipe welding[J]. Thermal Science and Engineering Progress, 2018, 5: 1-14.
10 廖小伟. 低温环境下桥梁钢材与焊接细节的疲劳性能研究[D]. 北京: 清华大学土木工程学院, 2018.
Liao Xiao-wei. Research on fatigue properties of bridge steel and welding details in low temperature environment[D]. Beijing: School of Civil Engineering, Tsinghua University, 2018.
11 卫星, 刘茂坤, 肖林, 等. 斜十字接头三维焊接残余应力的数值模拟[J]. 焊接学报, 2019, 40(5): 48-53,78, 163.
Wei Xing, Liu Mao-kun, Xiao Lin, et al. Numerical simulation of three-dimensional welding residual stress of inclined cross joints [J]. Chinese Journal of Welding, 2019, 40(5): 48-53, 78,163.
12 王瑞. 钢箱梁制造焊接过程温度场及应力场的数值分析[D]. 成都: 西南交通大学机械工程学院, 2016.
Wang Rui. Numerical analysis of temperature field and stress field during welding of steel box girder[D]. Chengdu: School of Mechanical Engineering, Southwest Jiaotong University, 2016.
13 Eagar T W, Tsai N S. Temperature fields produced by traveling distributed heat sources[J]. Weld Res Suppl, 1983, 62(12): 346-355.
14 贾单锋, 王元清, 崔佳, 等. 桥梁钢Q345qD低温力学性能及冲击韧性试验研究[J]. 钢结构, 2017, 32(5): 41-45.
Jia Shan-feng, Wang Yuan-qing, Cui Jia, et al. Experimental study on low temperature mechanical properties and impact toughness of bridge steel Q345qD[J]. Steel Structure, 2017, 32(5): 41-45.
[1] 龙关旭,张修石,辛公锋,王涛,杨干. 融合机器视觉的桥梁动态称重方法[J]. 吉林大学学报(工学版), 2024, 54(1): 188-197.
[2] 谭国金,欧吉,艾永明,杨润超. 基于改进DeepLabv3+模型的桥梁裂缝图像分割方法[J]. 吉林大学学报(工学版), 2024, 54(1): 173-179.
[3] 左新黛,张劲泉,赵尚传. 在役混凝土T梁疲劳刚度退化及寿命预测方法[J]. 吉林大学学报(工学版), 2023, 53(9): 2563-2572.
[4] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[5] 安然,王有志. 剪力钉连接件拉剪共同作用抗剪性能[J]. 吉林大学学报(工学版), 2023, 53(9): 2554-2562.
[6] 宫亚峰,吴树正,毕海鹏,谭国金. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2321-2331.
[7] 王俊,李加武,王峰,张久鹏,黄晓明. 简化U形峡谷风速分布及其对悬索桥抖振响应的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1658-1668.
[8] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[9] 冯宇,郝键铭,王峰,张久鹏,黄晓明. 非平稳极端风作用下大跨桥梁瞬态风致效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1638-1649.
[10] 王华,王龙林,张子墨,何昕. 基于裂缝宽度变化的连续刚构桥安全性预警技术[J]. 吉林大学学报(工学版), 2023, 53(6): 1650-1657.
[11] 吴春利,黄诗茗,李魁,顾正伟,黄晓明,张炳涛,杨润超. 基于数值仿真和统计分析的洪水作用下桥墩作用效应分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1612-1620.
[12] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[13] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[14] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[15] 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!