吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1567-1575.doi: 10.13229/j.cnki.jdxbgxb.20230789
Yi-yong PAN(
),Jia-cong XU,Yi-wen YOU,Yong-jun QUAN
摘要:
为探索不同出行距离尺度下网约车出行需求影响机理,基于多源数据对不同距离网约车出行需求进行分析。以长短距离网约车出行需求为因变量构建多尺度地理加权回归模型,揭示道路网、土地利用、人口分布和公共交通等建成环境因素对长短距离网约车出行需求的影响及其空间异质性。结果表明:MGWR的拟合结果优于传统地理加权回归模型和最小二乘法模型,长短距离网约车出行需求影响因素具有显著的空间异质性;主干路密度在市中心与短距离网约车出行需求呈正相关,在城市外围与长距离网约车出行需求呈负相关;人口密度在城市外围与长距离网约车出行需求呈正相关,在中心城区与短距离网约车出行需求呈负相关;短距离网约车在市中心与公共交通之间存在竞争,长距离网约车在城市周边补充公共交通服务的不足。研究结果有助于动态优化车辆配置调度,促进网约共享出行的可持续发展。
中图分类号:
| [1] | 陈喜群. 网约共享出行研究综述[J]. 交通运输系统工程与信息, 2021, 21(5): 77-90. |
| Chen Xi-qun. A survey of research on network-sharing travel [J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 77-90. | |
| [2] | Gehrke S R, Felix A, Reardon T G. Substitution of ride-hailing services for more sustainable travel options in the greater Boston region[J]. Transportation Research Record, 2019, 2673(1): 438-446. |
| [3] | Acheampong R A, Siiba A, Okyere D K, et al. Mobility-on-demand: An empirical study of internet-based ride-hailing adoption factors, travel characteristics and mode substitution effects[J]. Transportation Research Part C: Emerging Technologies, 2020, 115: 102638. |
| [4] | 钟军, 林岩, 杭宇. 中国城市网约车服务对公交使用量的影响[J]. 交通运输系统工程与信息, 2020, 20(5): 234-239. |
| Zhong Jun, Lin Yan, Hang Yu. Impact of ride-hailing service on use of public transport in China's cities [J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(5): 234-239. | |
| [5] | Javid M A, Abdullah M, Ali N. Travellers' perceptions about ride-hailing services in Lahore: An extension of the theory of planned behavior[J]. Asian Transport Studies, 2022, 8: 100083. |
| [6] | 袁亮, 吴佩勋. 城市居民对网约车与出租车的选择意愿及影响因素研究: 基于江苏省调查数据的 Logistic 分析[J]. 软科学, 2018, 32(4): 120-123. |
| Yuan Liang, Wu Pei-xun. Study on the choice and influence factors of urban residents' selection of network-booking and taxis: Logistic analysis based on the survey data of Jiangsu province[J]. Soft Science, 2018, 32(4): 120-123. | |
| [7] | Hou Y, Garikapati V, Weigl D, et al. Factors influencing willingness to pool in ride-hailing trips[J]. Transportation Research Record, 2020, 2674(5): 419-429. |
| [8] | Huang G, Qiao S, Yeh A G O. Spatiotemporally heterogeneous willingness to ridesplitting and its relationship with the built environment: A case study in Chengdu, China[J]. Transportation Research Part C: Emerging Technologies, 2021, 133: 103425. |
| [9] | Barajas J M, Brown A. Not minding the gap: Does ride-hailing serve transit deserts?[J]. Journal of Transport Geography, 2021, 90: 102918. |
| [10] | Zheng Z, Zhang J, Zhang L, et al. Understanding the impact of the built environment on ride-hailing from a spatio-temporal perspective: A fine-scale empirical study from China[J]. Cities, 2022, 126: 103706. |
| [11] | Wang S, Noland R B. Variation in ride-hailing trips in Chengdu, China[J]. Transportation Research Part D: Transport and Environment, 2021, 90: 102596. |
| [12] | 许心越,孔庆雪,李建民,等.建成环境对轨道交通客流的时空异质性影响分析[J].交通运输系统工程与信息,2023,23(4):194-202. |
| Xu Xin-yue, Kong Qing-xue, Li Jian-min, et al. Analysis of spatio-temporal heterogeneity impact of built environment on rail transit passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2023,23(4):194-202. | |
| [13] | 尹超英,邵春福,王晓全,等.考虑空间异质性的建成环境对通勤方式选择的影响[J].吉林大学学报: 工学版, 2020,50(2):543-548. |
| Yin Chao-ying, Shao Chun-fu, Wang Xiao-quan, et al. Influence of built environment on commuting mode choice considering spatial heterogeneity[J]. Journal of Jilin University (Engineering and Technology Edition), 2020,50(2):543-548. | |
| [14] | Yu H, Peng Z R. Exploring the spatial variation of ridesourcing demand and its relationship to built environment and socioeconomic factors with the geographically weighted Poisson regression[J]. Journal of Transport Geography, 2019, 75: 147-163. |
| [15] | 马书红,廖国美,黄岩, 等. 建成环境对交通小区地铁通勤客流的异质性影响[J].吉林大学学报:工学版, 2024, 54 (7): 1913-1922. |
| Ma Shu-hong, Liao Guo-mei, Huang Yan, et al. Heterogeneity of built environment on commuter passenger flow of subway in traffic analysis zones[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (7): 1913-1922. | |
| [16] | An R, Wu Z, Tong Z, et al. How the built environment promotes public transportation in Wuhan: A multiscale geographically weighted regression analysis[J]. Travel Behaviour and Society, 2022, 29: 186-199. |
| [17] | 龙雪琴,赵欢,周萌,等.成都市建成环境对网约车载客点影响的时空分异性研究[J].地理科学,2022,42(12):2076-2084. |
| Long Xue-qin, Zhao Huan, Zhou Meng, et al. Spatiotemporal heterogeneity of the impact of built environment in Chengdu on online car-hailing passengers' pick-up points[J]. Scientia Geographica Sinica, 2022, 42(12): 2076-2084. | |
| [18] | Liu X, Gong L, Gong Y, et al. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015, 43: 78-90. |
| [19] | Chen C, Feng T, Ding C, et al. Examining the spatial-temporal relationship between urban built environment and taxi ridership: Results of a semi-parametric GWPR model[J]. Journal of Transport Geography, 2021, 96: 103172. |
| [20] | Hayes A F, Cai L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation[J]. Behavior Research Methods, 2007, 39: 709-722. |
| [21] | Du M, Cheng L, Li X, et al. Spatial variation of ridesplitting adoption rate in Chicago[J]. Transportation Research Part A: Policy and Practice, 2022, 164: 13-37. |
| [22] | Thompson E S, Saveyn P, Declercq M, et al. Characterisation of heterogeneity and spatial autocorrelation in phase separating mixtures using Moran's I[J]. Journal of Colloid and Interface Science, 2018, 513: 180-187. |
| [23] | Vandenbulcke G, Dujardin C, Thomas I, et al. Cycle commuting in Belgium: Spatial determinants and 're-cycling'strategies[J]. Transportation Research Part A: Policy and Practice, 2011, 45(2): 118-137. |
| [24] | Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1): 17-23. |
| [25] | Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996, 28: 281-298. |
| [1] | 卢凯明,陈艳艳,仝瑶,张健,李永行,罗莹. 数据驱动的信号交叉口排队尾车驶离状态预测[J]. 吉林大学学报(工学版), 2025, 55(4): 1275-1286. |
| [2] | 周成栋,宋菲,赵小梅,姚俊杰. 基于多模式双动态演化的拥堵收费模型[J]. 吉林大学学报(工学版), 2025, 55(4): 1319-1327. |
| [3] | 张河山,范梦伟,谭鑫,郑展骥,寇立明,徐进. 基于改进YOLOX的无人机航拍图像密集小目标车辆检测[J]. 吉林大学学报(工学版), 2025, 55(4): 1307-1318. |
| [4] | 秦严严,肖腾飞,罗钦中,王宝杰. 雾天高速公路车辆跟驰安全分析与控制策略[J]. 吉林大学学报(工学版), 2025, 55(4): 1241-1249. |
| [5] | 宋现敏,湛天舒,李海涛,刘博,张云翔. 考虑用户成本和泊位利用率的停车预约分配模型[J]. 吉林大学学报(工学版), 2025, 55(4): 1287-1297. |
| [6] | 郭祎,魏书威,姜涛. 基于区位势能和多源数据的城市客运交通规划算法[J]. 吉林大学学报(工学版), 2025, 55(4): 1328-1335. |
| [7] | 潘义勇,徐翔宇. 数据不平衡的MobileViT网络交通事故严重程度预测模型[J]. 吉林大学学报(工学版), 2025, 55(3): 947-953. |
| [8] | 陈永恒,杨家伟,孙经宇. 借道左转交叉口的网联左转车辆最佳轨迹控制[J]. 吉林大学学报(工学版), 2025, 55(2): 614-622. |
| [9] | 陈发城,鲁光泉,林庆峰,张浩东,马社强,刘德志,宋会军. 有条件自动驾驶下驾驶人接管行为综述[J]. 吉林大学学报(工学版), 2025, 55(2): 419-433. |
| [10] | 何永明,冯佳,魏堃,万亚楠. 超高速公路曲线路段车辆制动侧滑影响因素分析[J]. 吉林大学学报(工学版), 2025, 55(2): 591-602. |
| [11] | 吴娇蓉,刘旭东. 不同住房类型空间单元的建成环境对通勤方式选择的影响分析[J]. 吉林大学学报(工学版), 2025, 55(2): 554-565. |
| [12] | 王长帅,徐铖铖,任卫林,彭畅,佟昊. 自动驾驶接管过程中驾驶能力恢复状态对交通流振荡特性的影响[J]. 吉林大学学报(工学版), 2025, 55(1): 150-161. |
| [13] | 年光跃,潘海啸,孙健. 城市建成环境与道路交通运行关系[J]. 吉林大学学报(工学版), 2025, 55(1): 141-149. |
| [14] | 周锡浈,宫贺,李敦敦,季彦婕,严杰. 建成环境对路内停车泊位使用率的非线性影响模型[J]. 吉林大学学报(工学版), 2024, 54(9): 2520-2530. |
| [15] | 严利鑫,曾涛,贺宜,郭军华,胡鑫辉. 共驾型智能车辆人机接管行为序列编码与解析[J]. 吉林大学学报(工学版), 2024, 54(9): 2547-2556. |
|