吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1595-1603.doi: 10.13229/j.cnki.jdxbgxb.20230814

• 交通运输工程·土木工程 • 上一篇    下一篇

基于参数相关性分析和机器学习算法的高强混凝土徐变预测

梅生启1,2(),刘晓东2,王兴举3,李旭峰2,武腾2,程相旭2   

  1. 1.道路与铁道工程安全保障教育部重点实验室,石家庄 050043
    2.石家庄铁道大学 土木工程学院,石家庄 050043
    3.石家庄铁道大学 交通运输学院,石家庄 050043
  • 收稿日期:2023-08-03 出版日期:2025-05-01 发布日期:2025-07-18
  • 作者简介:梅生启(1990-),男,副教授,博士研究生. 研究方向:服役结构长期性能. E-mail:cshqmei@stdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52108161);河北省自然科学基金青年项目(E2021210030);河北省高等学校科学研究项目(BJK2024127)

Prediction of high strength concrete creep based on parametric MIC analysis and machine learning algorithm

Sheng-qi MEI1,2(),Xiao-dong LIU2,Xing-ju WANG3,Xu-feng LI2,Teng WU2,Xiang-xu CHENG2   

  1. 1.Key Laboratory of Roads and Railway Engineering Safety of Ministry of Education,Shijiazhuang 050043,China
    2.School of Civil Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    3.School of Traffic and Transportation,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
  • Received:2023-08-03 Online:2025-05-01 Published:2025-07-18

摘要:

针对预测混凝土徐变的机器学习模型已有较多研究,但区分混凝土强度的研究较少的问题,基于NU-ITI数据库,采用3种机器学习模型,即反向传播人工神经网络、支持向量回归和极端梯度提升(XGBoost)建立了混凝土徐变的预测模型。结果表明,XGBoost能很好地预测混凝土的徐变(R2=0.972 9)。通过对高强混凝土参数的相关性分析,筛选出相关系数最高和最低的参数组。基于参数筛选后的XGBoost模型重新对高强混凝土徐变进行计算,发现筛除弱相关参数会显著降低计算结果的鲁棒性。本文研究表明,高强混凝土徐变影响参数之间存在不同程度的相关性,筛除强相关参数对模型计算准确性影响较小,而筛除弱相关参数影响较大。研究成果可为高强混凝土徐变的建模提供参考。

关键词: 结构工程, 高强混凝土徐变, 机器学习模型, 最大信息相关系数, 鲁棒性

Abstract:

Although machine learning models for predicting concrete creep have been numerous studied, but only a few studies have distinguished concrete strength. Firstly, based on NU-ITI database, three machine learning models BPANN, SVR and XGBoost are used to build a prediction model for concrete creep. The results indicate that XGBoost can effectively predict the creep of concrete (R2=0.972 9). Secondly, through the analysis of correlations among parameters of high strength concrete, the parameter groups with the highest and lowest correlation coefficients were identified. Based on the parameter selection, the XGBoost models was recalculated for high strength concrete creep, revealing that excluding weakly correlated parameters significantly reduces the robustness of the computational results. This study demonstrates that there are varying degrees of correlation among parameters affecting the creep of high strength concrete. The exclusion of strongly correlated parameters has a minor impact on the accuracy of the model calculations, while the exclusion of weakly correlated parameters has a more significant effect. The research findings can serve as a reference for modeling the creep of high strength concrete.

Key words: structural engineering, high strength concrete creep, machine learning model, maximum information coefficient, robustness

中图分类号: 

  • TU17

图1

NSC和HSC徐变数据"

图2

实验结果和MC2010模型预测结果对比"

表1

B4模型和MC2010模型的影响参数"

模型类型影响参数
B4内部影响参数骨料重量、含气量、水泥含量、水泥种类、弹性模量、水灰比、抗压强度
外部影响参数环境相对湿度、环境温度、干燥龄期
MC2010内部影响参数水泥类型、抗压强度、弹性模量
外部影响参数加载龄期、截面尺寸、环境相对湿度、环境温度、应力等级、持荷时间

图3

HSC与NSC影响参数相关度"

图4

BP ANN原理图"

表2

BPANN结构参数"

输入层隐藏层输出层激活函数学习率损失函数
1112-10-101ReLU0.005MAE

图5

SVR原理图"

表3

XGBoost参数"

参数
数值1000.36011

表4

不同机器学习模型的性能"

性能指标BPANNSVRXGBoost
训练集测试集训练集测试集训练集测试集
OBJ24.4132.905.80
RMSE/10-6(με·MPa-123.5123.6028.3629.116.509.46
MAE/10-6(με·MPa-116.5916.4022.8122.734.065.28
R20.827 00.796 00.748 00.744 00.986 70.972 9

图6

BPANN、SVR和XGBoost训练集和测试集结果"

图7

MIC热图"

表5

不同输入变量的组合"

组合类型参数
1HSCv/st0σfc、RH、ETa/ccw/c、Δt
2HSCv/st0σfc、RH、ETw/c、Δt
3HSCv/st0σ、RH、ETa/ccw/c

表6

不同组合的XGBoost性能"

性能

指标

组合1组合2组合3
训练集测试集训练集测试集训练集测试集
OBJ1.541.7310.90
RMSE/(με·MPa-11.30×10-63.57×10-61.45×10-64.38×10-611.97×10-613.77×10-6
MAE/(με·MPa-10.97×10-61.85×10-61.00×10-62.00×10-66.97×10-67.17×10-6
R20.9980.9900.9980.9850.8950.855

图8

组合1,2,3的XGBoost训练集和测试集结果"

表7

两种组合的XGBoost性能"

性能

指标

组合4组合5
训练集测试集训练集测试集
OBJ1.7810.89
RMSE/(με·MPa-1

1.46×

10-6

4.68×

10-6

11.96×

10-6

13.77×

10-6

MAE/(με·MPa-1

1.02×

10-6

2.04×

10-6

6.99×

10-6

7.17×

10-6

R20.9980.9830.8980.854

图9

组合4和5的XGBoost训练集和测试集结果"

表8

两种输入变量的组合"

组合类型参数
4HSCv/st0σfcRHETa/cw/c、Δt
5HSCv/st0σfcRHETa/ccw/c
[1] Vandamme M, Ulm F J. Nanogranular origin of concrete creep[J]. Proceedings of the National Academy of Sciences, 2009, 106(26): 10552-10557.
[2] 黄永辉, 刘爱荣, 傅继阳, 等.高强钢管高强混凝土徐变特性试验研究[J]. 工程力学, 2021,38(8): 204-212.
Huang Yong-hui, Liu Ai-rong, Fu Ji-yang, et al. Experimental study on the creep characteristics of high-strength concrete filled high-strength steel tube [J]. Engineering Mechanics, 2021, 38(8): 204-212.
[3] 柯敏勇, 刘海祥, 陈松.桥用高强混凝土双轴徐变试验研究[J].建筑结构学报,2012, 33(6): 116-122.
Ke Min-yong, Liu Hai-xiang, Chen Song. Biaxial creep experiment for high strength concrete in bridge engineering [J]. Journal of Building Structures, 2012, 33(6): 116-122.
[4] Le Roy R, Le Maou F, Torrenti J M. Long term basic creep behavior of high performance concrete: data and modelling[J]. Materials and Structures, 2017, 50(1): 1-11.
[5] ACI Committee 209.209R1-92: Prediction of creep, shrinkage and temperature effects in concrete structures. manual of concrete practice part 1 [S/OL]. [1992-01-03].
[6] Betonbau. Fib model code for concrete structures 2010[J]. Ernst Shon, 2013: 97834336.
[7] Gardner N J, Lockman M J. Design provisions for drying shrinkage and creep of normal strength concrete [J]. ACI Materials Journal, 2001, 98(2): 159-167.
[8] Bažant Z P, Baweja S. Creep and shrinkage prediction model for analysis and design of concrete structures: model B3[J]. Materials and Structures, 1995, 28(6): 357-365.
[9] Bažant Z P, Wendner R. RILEM draft recommendation. TC-242-MDC multi-decade creep and shrinkage of concreteL Material model and structural analysis Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decad applicability[J]. Materials Structures, 2015, 48(4): 753-770.
[10] Peng Y, Unluer C. Modeling the mechanical properties of recycled aggregate concrete using hybrid machine learning algorithms[J]. Resources, Conservation and Recycling, 2023, 190: 106812.
[11] Yang Z, Zhu H, Zhang B, et al. Short-term creep behaviors of seawater sea-sand coral aggregate concrete: An experimental study with rheological model and neural network[J]. Construction and Building Materials, 2023, 363: 129786.
[12] Pham A D, Hoang N D, Nguyen Q T. Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression[J]. Journal of Computing in Civil Engineering, 2016, 30(3): No.06015002.
[13] Liang M, Chang Z, Wan Z, et al. Interpretable ensemble-machine-learning models for predicting creep behavior of concrete[J]. Cement and Concrete Composites, 2022, 125: 104295.
[14] 曲广雷, 闫宗伟, 郑木莲, 等. 基于神经网络与回归分析的多孔混凝土性能预测[J]. 吉林大学学报:工学版, 2025, 55(1): 269-282.
Qu Guang-lei, Yan Zong-wei, Zheng Mu-lian, et al. Performance prediction of porous concrete based on neural network and regression analysis[J]. Journal of Jilin University (Engineering and Technology Editon), 2025, 55(1): 269-282.
[15] Xu J, Zhao X, Yu Y, et al. Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks[J]. Construction and Building Materials, 2019, 211: 479-491.
[16] Park D, Rilett L R. Forecasting freeway link travel times with a multilayer feedforward neural network[J]. Computer‐Aided Civil and Infrastructure Engineering, 1999, 14(5): 357-367.
[17] Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518-1524.
[18] Li K, Long Y, Wang H, et al. Modeling and sensitivity analysis of concrete creep with machine learning methods[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021206.
[19] Hubler M H, Wendner R, Bazant Z P. Comprehensive database for concrete creep and shrinkage: Analysis and recommendations for testing and recording[J]. ACI Materials Journal, 2015, 112(4): 547-558.
[20] Tang L, Na S H. Comparison of machine learning methods for ground settlement prediction with different tunneling datasets[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(6): 1274-1289.
[21] Hastie T, Tibshirani R, Friedman J H, et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction[M]. New York: Springer, 2009.
[22] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20: 273-297.
[23] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830.
[24] Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785-794.
[25] Zeghal M. Modeling the creep compliance of asphalt concrete using the artificial neural network technique[C]∥GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems, New Orleans, USA, 2008: 910-916.
[1] 樊学平,杨渡,李九谕,赵启凡,刘月飞. 温度和车辆荷载耦合产生的桥梁极值应力预测[J]. 吉林大学学报(工学版), 2025, 55(5): 1588-1594.
[2] 张亮亮,程桦,王晓健. 常规三轴压缩下高强混凝土能量演化和破坏准则[J]. 吉林大学学报(工学版), 2025, 55(3): 974-985.
[3] 周宇,李萌,狄生奎,石贤增,陈东. 变截面两铰拱推力影响线解析解及损伤识别应用[J]. 吉林大学学报(工学版), 2025, 55(2): 664-672.
[4] 王羽岱,王斌,苗福生,马楠. 水热耦合变化下衬砌渠道冻胀响应[J]. 吉林大学学报(工学版), 2025, 55(1): 256-268.
[5] 姜浩,赵正文. 玄武岩纤维网格水泥基复合材料加固RC梁抗剪性能试验[J]. 吉林大学学报(工学版), 2025, 55(1): 211-220.
[6] 韦芳芳,李丽萍,徐庆鹏,赵有正,杨晶晶. 受火双钢板-混凝土组合剪力墙加固后抗震性能试验[J]. 吉林大学学报(工学版), 2025, 55(1): 230-244.
[7] 赵金全,周龙,丁永刚,朱熔基. 螺旋箍筋-波纹管浆锚连接锚固性能试验[J]. 吉林大学学报(工学版), 2024, 54(9): 2484-2494.
[8] 杨伟松,张安,许卫晓,李海生,杜轲. 刚度增强型金属连梁阻尼器的抗震性能[J]. 吉林大学学报(工学版), 2024, 54(9): 2469-2483.
[9] 阎奇武,邹忠亮. 减震结构阻尼器优化布置混合算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2267-2274.
[10] 姜封国,周玉明,白丽丽,梁爽. 改进磷虾群算法及其在结构优化中的应用[J]. 吉林大学学报(工学版), 2024, 54(8): 2256-2266.
[11] 张广泰,周乘孝,刘诗拓. 盐渍土环境下纤维锂渣混凝土柱恢复力模型[J]. 吉林大学学报(工学版), 2024, 54(7): 1944-1957.
[12] 刁延松,任义建,杨元强,赵凌云,刘秀丽,刘芸. 带有摩擦耗能组件的可更换钢梁柱拼接节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1643-1656.
[13] 樊学平,刘月飞. 基于改进高斯混合粒子滤波新算法的桥梁极值应力动态预测[J]. 吉林大学学报(工学版), 2024, 54(4): 1038-1044.
[14] 刘一凡,缪志伟,申晨,耿祥东. 基于蒙特卡罗法的不均匀锈蚀钢筋力学性能评估[J]. 吉林大学学报(工学版), 2024, 54(4): 1007-1015.
[15] 樊学平,周衡,刘月飞. 基于Gaussian Copula-贝叶斯动态模型的桥梁构件时变可靠性分析[J]. 吉林大学学报(工学版), 2024, 54(2): 485-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李少华,黄慧,郭婷婷,蒲建业 . 颗粒在横向紊动射流中运动轨迹的数值模拟[J]. 吉林大学学报(工学版), 2006, 36(06): 1029 -1033 .
[2] 陈瑜,唐常杰,朱明放,代术成,朱锐,姜玥,李川. 基于GEP基因约简策略的多项式因式分解[J]. 吉林大学学报(工学版), 2009, 39(06): 1612 -1617 .
[3] 阳湘安, 阮锋. 基于回弹补偿的模具型面修正方向[J]. 吉林大学学报(工学版), 2012, 42(01): 103 -108 .
[4] 崔向红, 姜启川,王树奇, 李俊义. 精铸模具钢热锻模的应用及寿命的提高[J]. 吉林大学学报(工学版), 2005, 35(06): 567 -0572 .
[5] 潘乔, 裴昌幸. 基于信息熵理论的高速IPv6网络流量抽样测量方法[J]. 吉林大学学报(工学版), 2009, 39(05): 1337 -1341 .
[6] 高一鹏,丁洪,金学军. CoAlW合金时效过程中γ′相析出的相场模拟[J]. 吉林大学学报(工学版), 2011, 41(01): 84 -0088 .
[7] 方志耕,刘思峰,阮爱清. 基于不能直接判定区间灰数大小的灰矩阵博弈的纯策略解及其风险[J]. 吉林大学学报(工学版), 2006, 36(01): 137 -0142 .
[8] 周洁,赵晓晖,林高三 . OFDM系统中一种基于LMMSE的
半盲信道估计算法
[J]. 吉林大学学报(工学版), 2009, 39(02): 508 -0513 .
[9] 杜君,李伟华. 面向多跳无线自组织网络的安全信任模型[J]. 吉林大学学报(工学版), 2011, 41(05): 1421 -1425 .
[10] 贾鹤鸣, 宋文龙, 陈子印. 基于反馈增益反步法的非完整约束移动机器人路径跟踪控制[J]. , 2012, 42(04): 1003 -1007 .