吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (5): 1648-1663.doi: 10.13229/j.cnki.jdxbgxb.20230849

• 计算机科学与技术 • 上一篇    下一篇

边云协作下时延和能耗约束的启发式任务卸载方法

苏命峰1,2(),王国军3(),周聪1,王田4   

  1. 1.湖南第一师范学院 计算机学院,长沙 410205
    2.中南大学 计算机学院,长沙 410083
    3.广州大学 计算机科学与网络工程学院,广州 510006
    4.北京师范大学 人工智能与未来网络研究院,广东 珠海 519087
  • 收稿日期:2023-08-11 出版日期:2025-05-01 发布日期:2025-07-18
  • 通讯作者: 王国军 E-mail:mfsu@hnfnu.edu.cn;csgjwang@gzhu.edu.cn
  • 作者简介:苏命峰(1980-),男,教授,博士. 研究方向:边缘计算与协同计算. E-mail:mfsu@hnfnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(62372121);国家重点研发计划项目(2020YFB1005804);湖南省自然科学基金项目(2024JJ5105);湖南省自然科学基金项目(2023JJ40081);中南大学中央高校基本科研业务费专项项目(2018zzts180)

A heuristic task offloading approach with delay and energy constraints for edge-cloud collaboration

Ming-feng SU1,2(),Guo-jun WANG3(),Cong ZHOU1,Tian WANG4   

  1. 1.School of Computer Science,Hunan First Normal University,Changsha 410205,China
    2.School of Computer Science and Engineering,Central South University,Changsha 410083,China
    3.School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou 510006,China
    4.Institute of Artificial Intelligence and Future Networks,Beijing Normal University,Zhuhai 519087,China
  • Received:2023-08-11 Online:2025-05-01 Published:2025-07-18
  • Contact: Guo-jun WANG E-mail:mfsu@hnfnu.edu.cn;csgjwang@gzhu.edu.cn

摘要:

为解决移动边缘计算中设备资源受限叠加任务复杂变化,引起负载失衡、任务时延和能耗增大等问题,仿生麻雀共生合作觅食搜索提出一种时延和能耗约束的边云协作计算任务卸载方法。首先,适应移动边云协作,设计飞行者改进发现者更新、正余弦扰动跟随者更新和自适应调整预警者更新,提出一种多策略改进麻雀搜索算法(MSSA)优化任务卸载位置。然后,考虑任务最大完成期限与时延松弛变量,融入超时惩罚能耗,提出一种基于MSSA的启发式任务卸载算法(HTMA),贪心比较不同时延约束下预卸载位置集的总任务时延和总任务能耗,进一步优化任务卸载。仿真实验表明:相比同类算法,本文搜索算法能有效提升寻优精度、收敛速度和鲁棒性,并且本文任务卸载算法适应网络变化的任务平均时延、总任务能耗和节点负载均衡度性能更优。

关键词: 边缘计算, 任务卸载, 边云协作, 启发式算法, 云计算

Abstract:

To address the problems of load imbalance, task delay, and increased energy consumption caused by limited device resources and complex task variations in mobile edge computing, a computing task offloading approach with delay and energy constraints for edge-cloud collaboration is proposed, inspired by the cooperative foraging search of sparrow populations. Firstly, adapting to mobile edge cloud collaboration, designing the flyer improved producer update, sine-cosine perturbed follower update, and adaptively adjusted alerter update, a multi-strategy improved sparrow search algorithm (MSSA) is proposed to optimize task offloading location. Then, considering the task maximum completion deadline and delay relaxation variables, incorporating the timeout penalty energy consumption, a heuristic task offloading with MSSA algorithm (HTMA) is proposed, which greedily compares the total task delay and total task energy consumption of pre-offloading location sets under different delay constraints to further optimize task offloading. Experimental results show that compared with similar algorithms, MSSA can improve the optimization accuracy, convergence speed, and robustness of location search. Moreover, HTMA adapts to network changes with better performance of average task completion delay, total task energy consumption, and node load balancing degree.

Key words: edge computing, task offloading, edge-cloud collaboration, heuristic algorithm, cloud computing

中图分类号: 

  • TP301.6

图1

移动边云协作计算模型"

图2

发现者的任务卸载位置搜索空间(?rv<?wv)"

图3

θτ和ρτ的变化曲线(τmax=500)"

表1

实验环境参数"

参数单位值范围
任务数据量kB[600,1 000]
任务计算量cycle·kbit-120,100]
任务最大完成期限ms50
无线传输功率W25
边缘设备的最大无线链路带宽Mbit/s100
信道增益系数118.2-8~1.5-6
噪声功率W12]?10-8
边缘设备的最大算力GHz2×[24
边缘设备的有线链路带宽Mbit/s1 000
边缘设备的有线传输功率W13
边缘设备任务执行功率系数W·Hz-3[1.2,1.5]×10-26
云中心任务执行功率W[2.1,2.5]×10-25

表2

算法参数设置"

算法参数
MSSAμsd=20, ?wv=0.8, μswmax=30, μswmin=3, nj)=100
SSAμsd=20, ?wv=0.8, μsw=20, nj)=100
RWSSAμsd=20, ?wv=0.8, μsw=20, nj)=100
AWPSOC1=1.5, C2=1.5, W=0.8, nj)=100

图4

算法性能(n(i)=100, n(s)=5)"

图5

不同任务下算法最优适应度值"

图6

不同任务下算法收敛"

图7

不同任务下任务平均时延(n(s)=5)"

图8

不同边缘设备下任务平均时延(n(i)=100)"

图9

不同任务下总任务能耗(n(s)=5)"

图10

不同边缘设备下总任务能耗(n(i)=100)"

图11

不同任务下节点负载均衡度(n(s)=5)"

图12

不同边缘设备下节点负载均衡度(n(i)=100)"

图13

不同γ的总任务时延和总任务能耗(n(i)=100, n(s)=5)"

图14

不同tξ的总任务时延和总任务能耗(n(i)=100, n(s)=5)"

图15

不同ξ的总系统服务能耗(n(i)=100, n(s)=5)"

图16

不同ωT的总任务时延和总任务能耗(n(i)=100, n(s)=5)"

[1] Kim T, Sathyanarayana S D, Chen S Q, et al. MoDEMS: optimizing edge computing migrations for user mobility[J] IEEE Journal on Selected Areas in Communications, 2023, 41(3):675-689.
[2] 张依林, 梁玉珠, 尹沐君, 等. 移动边缘计算中计算卸载方案研究综述[J]. 计算机学报, 2021, 44(12): 2408-2432.
Zhang Yi-lin, Liang Yu-zhu, Yin Mu-jun, et al. Survey on the methods of computation offloading in mobile edge computing[J]. Chinese Journal of Computers, 2021,44(12):2408-2432.
[3] 苏命峰, 王国军, 李仁发. 基于利益相关视角的多维QoS云资源调度方法[J]. 通信学报, 2019, 40(6): 102-115.
Su Ming-feng, Wang Guo-jun, Li Ren-fa. Multidimensional QoS cloud computing resource scheduling method based on stakeholder perspective[J]. Journal on Communications, 2019, 40(6): 102-115.
[4] Wang S G, Guo Y, Zhang N, et al. Delay-aware microservice coordination in mobile edge computing: a reinforcement learning approach[J]. IEEE Transactions on Mobile Computing, 2021, 20(3): 939-951.
[5] Laskaridis S, Venieris S I, Almeida M, et al. SPINN: synergistic progressive inference of neural networks over device and cloud[C]∥The 26th ACM/IEEE International Conference on Mobile Computing and Networking, New York, USA, 2020: 1-15.
[6] 刘伟, 黄宇成, 杜薇, 等. 移动边缘计算中资源受限的串行任务卸载策略[J]. 软件学报, 2020, 31(6): 1889-1908.
Liu Wei, Huang Yu-cheng, Du Wei, et al. Resource-constrained serial task offload strategy in mobile edge computing[J]. Journal of Software, 2020, 31(6): 1889-1908.
[7] Wang T, Lu Y C, Wang J H, et al. EIHDP: edge-intelligent hierarchical dynamic pricing based on cloud-edge-client collaboration for iot systems[J]. IEEE Transactions on Computers, 2021, 70(8): 1285-1298.
[8] Zhao J H, Li Q P, Gong Y, et al. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7944-7956.
[9] Gupta S, Chakareski J. Lifetime maximization in mobile edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3310-3321.
[10] Jin P P, Fei X C, Zhang Q X, et al. Latency-aware VNF chain deployment with efficient resource reuse at network edge[C]∥The 39th IEEE Conference on Computer Communications, New Jersey, USA, 2020: 267-276.
[11] Zou J F, Hao T B, Yu C, et al. A3C-DO: a regional resource scheduling framework based on deep reinforcement learning in edge scenario[J]. IEEE Transactions on Computers, 2021, 70(2): 228-239.
[12] Ning Z L, Dong P R, Kong X J, et al. A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things[J]. IEEE Internet of Things Journal, 2019, 6(3): 4804-4814.
[13] Chen L X, Zhou S, Xu J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(4): 1619-1632.
[14] Lai F, Zhu X F, Madhyastha H V, et al. Oort: efficient federated learning via guided participant selection[C]∥The 15th USENIX Symposium on Operating Systems Design and Implementation, Berkeley, USA, 2021: 19-35.
[15] Biswas N, Wang Z J, Vandendorpe L, et al. On joint cooperative relaying, resource allocation, and scheduling for mobile edge computing networks[J]. IEEE Transactions on Computers, 2022, 70(9): 5882-5897.
[16] Xue J K, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[17] 国强, 朱国会, 李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报:工学版, 2023, 53(2): 593-600.
Guo Qiang, Zhu Guo-hui, Li Wan-chen. TDOA/FDOA localization based on chaotic sparrow search algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 593-600.
[18] Cheng B P, Fang Y W, Peng W S. Improved sparrow search algorithm based on normal cloud model and niche recombination strategy[J]. IEEE Transactions on Cloud Computing, 2023, 11(3): 2529-2545.
[19] Chang Z Z, Gu Q H, Lu C W, et al. 5G private network deployment optimization based on RWSSA in open-pit mine[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5466-5476.
[20] 苏命峰, 王国军, 李仁发. 边云协同计算中基于预测的资源部署与任务调度优化[J]. 计算机研究与发展, 2021, 58(11): 2558-2570.
Su Ming-feng, Wang Guo-jun, Li Ren-fa. Resource deployment with prediction and task scheduling optimization in edge cloud collaborative computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570.
[21] Liu W B, Wang Z D, Yuan Y, et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 1085-1093.
[22] Wang T, Zhang Y L, Xiong N A, et al. An effective edge-intelligent service placement technology for 5G-and-beyond industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6):4148-4157.
[1] 赵庶旭,孙治朝,王小龙. 移动边缘计算场景中的动态身份认证协议[J]. 吉林大学学报(工学版), 2025, 55(3): 1050-1060.
[2] 黄汉英,李鹏飞. 边缘服务器计算资源分配方法与仿真实验[J]. 吉林大学学报(工学版), 2025, 55(1): 316-324.
[3] 朱思峰,胡家铭,杨诚瑞,蔡江昊. 物联网边缘计算场景下基于优先级任务的卸载决策优化[J]. 吉林大学学报(工学版), 2024, 54(11): 3338-3350.
[4] 朱思峰,蔡江昊,柴争义,孙恩林. 车联网边缘场景下基于免疫算法的计算卸载优化[J]. 吉林大学学报(工学版), 2024, 54(1): 221-231.
[5] 焦玉玲,邓雪,李琳,刘文佳,张天泽,曹楠. 多约束条件下双边U型装配线平衡与协同优化[J]. 吉林大学学报(工学版), 2023, 53(7): 2053-2060.
[6] 杜睿山,陈雨欣,孟令东. 可信云计算平台多源大数据时间序列调度算法[J]. 吉林大学学报(工学版), 2023, 53(11): 3194-3200.
[7] 范大娟,黄志球,曹彦. 面向SaaS隐私保护的自适应访问控制方法[J]. 吉林大学学报(工学版), 2023, 53(10): 2897-2908.
[8] 朱思峰,赵明阳,柴争义. 边缘计算场景中基于粒子群优化算法的计算卸载[J]. 吉林大学学报(工学版), 2022, 52(11): 2698-2705.
[9] 焦玉玲,李琳,李津,徐彬杰,曹楠. 求解U型装配线平衡的改进启发式算法[J]. 吉林大学学报(工学版), 2021, 51(6): 2061-2067.
[10] 魏晓辉,汤钫宇,李洪亮. 地理分布数据中心的工作流经济高效资源分配[J]. 吉林大学学报(工学版), 2021, 51(4): 1349-1357.
[11] 李晓会,陈潮阳,伊华伟,李波. 基于云计算和大数据分析的大规模网络流量预测[J]. 吉林大学学报(工学版), 2021, 51(3): 1034-1039.
[12] 宋元,周丹媛,石文昌. 增强OpenStack Swift云存储系统安全功能的方法[J]. 吉林大学学报(工学版), 2021, 51(1): 314-322.
[13] 金顺福,郄修尘,武海星,霍占强. 基于新型休眠模式的云虚拟机分簇调度策略及性能优化[J]. 吉林大学学报(工学版), 2020, 50(1): 237-246.
[14] 焦玉玲, 徐良成, 王占中, 张鹏. 基于有向网络的双U型装配线平衡实验与分析[J]. 吉林大学学报(工学版), 2018, 48(2): 454-459.
[15] 王旭, 欧阳继红, 陈桂芬. 基于多重序列所有公共子序列的启发式算法度量多图的相似度[J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 聂建军,杜发荣,高峰 . 存在热漏的内燃机与斯特林联合循环的有限时间的热力学研究[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[2] 麻凯,陈塑寰. 结构优化中的海森矩阵的近似迭代方法[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 30 -0033 .
[3] 于树友,陈虹 . 基于滚动优化的H/广义H2主动悬架控制[J]. 吉林大学学报(工学版), 2007, 37(05): 1164 -1169 .
[4] 朴香兰,王国强,张占强,郝万军. 水平转弯颗粒流的离散元模拟[J]. 吉林大学学报(工学版), 2010, 40(01): 98 -0102 .
[5] 徐彩娜,殷涌光,王二雷,刘静波,林松毅,张刚. 基于遗传算法的卵黄高磷蛋白提取工艺优化[J]. 吉林大学学报(工学版), 2011, 41(03): 876 -881 .
[6] 赵春晖, 腾志军, 马爽. 基于广义功率谱密度的分布压缩宽带频谱感知[J]. , 2012, 42(04): 1015 -1020 .
[7] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423 -429 .
[8] 靳立强,王庆年,宋传学. 电动轮驱动汽车的最佳车轮滑移率实时识别[J]. 吉林大学学报(工学版), 2010, 40(04): 889 -0894 .
[9] 杨磊1,2,马彪1,李和言1. 在冰雪路面上静液驱动履带车辆转向的安全控制策略[J]. 吉林大学学报(工学版), 2011, 41(4): 904 -909 .
[10] 翟懿奎, 甘俊英, 徐颖, 曾军英. 快速稀疏表示指背关节纹识别及其并行实现[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 350 -355 .