吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 352-357.doi: 10.13229/j.cnki.jdxbgxb201402012
王甲春1, 阎培渝2
WANG Jia-chun1, YAN Pei-yu2
摘要:
为了分析海洋环境下钢筋混凝土中钢筋锈蚀的随机性,利用可靠度理论建立了钢筋混凝土中钢筋锈蚀的功能函数,引入混凝土的氯离子扩散系数和混凝土保护层厚度两个随机变量,推导出了在一定使用寿命条件下的钢筋混凝土中钢锈蚀的概率和在一定的钢筋锈蚀概率条件下钢筋混凝土结构的服役时间计算公式,通过模拟海水浸泡钢筋混凝土的腐蚀实验对此方法进行了验证。结果表明,利用概率方法分析钢筋混凝土的使用寿命和锈蚀概率是有效的,可以用来评价钢筋混凝土的耐久性,降低混凝土的渗透性和适当增加混凝土的保护层厚度可以明显提高钢筋混凝土在海洋环境下的耐久性。
中图分类号:
[1] Sun Wei, Mu Ru, Luo Xin, et al. Effect of chloride salt, freeze-thaw cycling and externally applied load on the performance of the concrete[J]. Cement and Concrete Research, 2002, 32(12): 1859-1864.[2] Long A E, Henderson G D, Montgomery F R. Why assess the properties of near-surface concrete[J]. Construction and Building Materials, 2001(15):65-79.[3] 施惠生, 王琼.海工混凝土使用寿命预测研究[J].建筑材料学报, 2004, 7(2):161-167. Shi Hui-sheng, Wang Qiong. Research on service life prediction of marine concrete[J]. Journal of Building Materials, 2004, 7(2):161-167.[4] Jin Zu-quan, Sun Wei, Zhang Yun-sheng, et al. Interaction between sulfate and chloride solution attack of concretes with and without fly ash[J]. Cement and Concrete Research, 2007, 37(8): 1223-1232.[5] 李中华, 巴恒静.混凝土的抗盐冻性能[J].吉林大学学报:工学版, 2009, 39 (4):926-931. Li Zhong-hua, Ba Heng-jing. Freeze-deicing salt resistance of concrete[J].Journal of Jilin University (Engineering and Technology Edition), 2009, 39(4):926-931.[6] Maage M, Helland S. Service life prediction of existing concrete structures exposed to marine environment[J]. ACI Materials Journal, 1996, 93 (6):602-608.[7] 李富民, 袁迎曙, 耿欧, 等.混凝土中钢筋腐蚀速率的理论模型[J]. 华南理工大学学报:自然科学版, 2009, 37(8):83-88. Li Fu-min, Yuan Ying-shu, Geng Ou, et al. Theoretical models of corrosion rate of steel bars embedded in concrete[J].Journal of South China University of Technology(Natural Science Edition), 2009, 37(8):83-88.[8] 贾超, 纪圣振, 张峰.青岛海湾大桥混凝土墩的时变可靠度[J]. 吉林大学学报:工学版, 2010, 40 (6):1543-1549. Jia Chao, Ji Sheng-zhen, Zhang Feng. Time-dependent reliability of concrete pier of Tsingtao bay bridge[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (6):1543-1549.[9] 王晓舟, 金伟良, 金立兵.基于广义扩散方程海工混凝土结构耐久寿命概率评估方法[J].海洋工程, 2009, 27(3):85-90. Wang Xiao-zhou, Jin Wei-liang, Jin Li-bing. A probabilistic approach of life prediction of marine concrete structures based on GDF[J]. The Ocean Engineering, 2009, 27(3):85-90.[10] 马亚丽, 张爱林.基于规定可靠指标的混凝土结构氯离子侵蚀耐久寿命预测[J]. 土木工程学报, 2006, 139 (12):36-41. Ma Ya-li, Zhang Ai-lin. Durability life prediction of concrete structure based on the regulated reliability index under chloride environment[J]. China Civil Engineering Journal, 2006, 139(12):36-41.[11] 吴瑾, 程吉昕.海洋环境下钢筋混凝土结构耐久性评估[J]. 水力发电学报, 2005, 24(1):68-71. Wu Jin, Cheng Ji-xin. Durability assessment of reinforced concrete structures in marine environment[J]. Journal of Hydroelectric Engineering, 2005, 24(1):68-71.[12] 吴瑾, 吴胜兴.海洋环境下混凝土中钢筋表面氯离子质量分数的随机模型[J]. 河海大学学报:自然科学版, 2004, 32 (1):38-41. Wu Jin, Wu Sheng-xing. Stochastic model of chloride ion concentration at steel-concrete interface in marine environment[J]. Journal of Hohai University(Natural Sciences), 2004, 32 (1):38-41.[13] Alonso C, Andrade C, Castellote M, et al. Chloride threshold values to depassivate reinforcing bars embedded in a standard OPC mortar[J]. Cement and Concrete Research, 2000, 30(10): 1047-1055.[14] Funahuashi M. Predicting corrosion-free service life of a concrete structure in a chloride environment[J]. ACI Materials Journal, 1990, 87 (6):581-587.[15] Dhir R K, Jones M R, Ng S L. Prediction of total chloride content profile and concentration/time dependent diffusion coefficients for concrete[J].Magazine of Concrete Research, 1998, 50(1):37-48.[16] 中国工程院土木水利与建筑学部.混凝土结构耐久性设计与施工指南[M].北京:中国建筑工业出版社, 2004.[17] 吴庆令.海洋环境下钢筋混凝土受弯构件的耐久性与寿命预测[D].南京:南京航空航天大学航空宇航学院, 2010. Wu Qing-ling. Durability and life prediction of the reinforced concrete bended element of in marine environment[D]. Nanjing: Aerospace Engineering College, Nanjing University of Aeronautics and Astronautics, 2010.[18] Stephen L A, Dwayne A J, Matthew A M, et al. Predicting the service life of concrete marine structures: an environmental methodology[J].ACI Structural Journal, 1998, 95 (2):205-214.[19] 刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社, 2007. |
[1] | 郑一峰, 赵群, 暴伟, 李壮, 于笑非. 大跨径刚构连续梁桥悬臂施工阶段抗风性能[J]. 吉林大学学报(工学版), 2018, 48(2): 466-472. |
[2] | 王腾, 周茗如, 马连生, 乔宏霞. 基于断裂理论的湿陷性黄土劈裂注浆裂纹扩展[J]. 吉林大学学报(工学版), 2017, 47(5): 1472-1481. |
[3] | 郭楠, 张平阳, 左煜, 左宏亮. 竹板增强胶合木梁受弯性能[J]. 吉林大学学报(工学版), 2017, 47(3): 778-788. |
[4] | 于天来, 刘兴国, 姚爽, 穆罕默德马苏. 碳纤维筋体外预应力加固钢筋混凝土梁的疲劳性能[J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873. |
[5] | 张静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102. |
[6] | 郭学东, 马立军, 张云龙. 集中力作用下考虑剪切滑移效应的双层结合面组合梁解析解[J]. 吉林大学学报(工学版), 2016, 46(2): 432-438. |
[7] | 赵玉, 李衍赫, 张培, 赵科, 刘伟超. 粘土的动力特性试验[J]. 吉林大学学报(工学版), 2015, 45(6): 1791-1797. |
[8] | 侯忠明, 王元清, 夏禾, 张天申. 移动荷载作用下的钢-混简支结合梁动力响应[J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427. |
[9] | 王涛, 裴存栋, 韩万水, 陈峰. 应力对混凝土中氯离子渗透性的影响[J]. 吉林大学学报(工学版), 2015, 45(4): 1102-1106. |
[10] | 郭俊平1, 邓宗才1, 卢海波2, 林劲松2. 预应力高强钢绞线网抗剪加固钢筋混凝土梁试验[J]. 吉林大学学报(工学版), 2014, 44(4): 968-977. |
[11] | 张大山, 董毓利, 吴亚平. 混凝土单向板的受拉薄膜效应计算[J]. 吉林大学学报(工学版), 2013, 43(05): 1253-1257. |
[12] | 柴寿喜, 王沛, 魏丽. 以峰值轴向应变评价麦秸秆和石灰加筋固化盐渍土的抗变形性能 [J]. , 2012, (03): 645-650. |
[13] | 李春良, 王国强, 赵凯军, 朱春凤. 地面荷载作用盾构隧道纵向力学行为[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 180-184. |
[14] | 刘寒冰, 郑继光, 邹品德. 叠合式钢筋混凝土圆截面短柱偏心受压承载力计算[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163. |
[15] | 潘明远, 姚继涛. 钢筋混凝土结构构件的可靠性[J]. 吉林大学学报(工学版), 2010, 40(增刊): 218-0221. |
|