吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (2): 343-351.doi: 10.13229/j.cnki.jdxbgxb201402011

• 论文 • 上一篇    下一篇

车路协同环境下基于路径的信号协调优化模型

吴伟, 马万经, 杨晓光   

  1. 同济大学 道路与交通工程教育部重点实验室, 上海 201804
  • 收稿日期:2012-09-18 出版日期:2014-02-01 发布日期:2014-02-01
  • 通讯作者: 马万经(1980- ),男,副教授.研究方向:交通系统分析与控制.E-mail:mawanjing@tongji.edu.cn E-mail:mawanjing@tongji.edu.cn
  • 作者简介:吴伟(1987- ),男,博士研究生.研究方向:交通信息工程及控制.E-mail:201804_wuwei@tongji.edu.cn
  • 基金资助:

    "863"国家高技术研究发展计划项目(2011AA110404);国家自然科学基金项目(51178345,11272067).

Route based signal coordination control model within vehicle infrastructure integration environment

WU Wei, MA Wan-jing, YANG Xiao-guang   

  1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2012-09-18 Online:2014-02-01 Published:2014-02-01

摘要:

基于车路协同环境下的动态路径流量、初始排队长度等信息及车辆-信号控制系统实时通信的运行环境,研究并建立了双向协调路径、车辆动态速度和交叉口配时参数的集成优化模型,克服了传统交叉口信号协调方法中路段行驶车速固定、受初始排队长度影响显著和不能优化协调路径的缺点。模型以协调路径流量与速度乘积最大为目标,以双向协调路径、相位差、车辆推荐速度等为决策变量进行优化,并建立了排队、车速、信号配时参数等一系列约束条件以确保集成优化解的可行性,从而实现了协调控制系统不停车通过量最大且延误最小的目的。与经典Maxband模型及Synchro软件的信号协调控制优化方案的比较表明,本文模型能够显著地提高绿波带宽,降低停车次数,提高协调效益。对路径流量波动、路段长度、最大限速及饱和度的敏感性分析进一步表明本模型能适用于不同的道路和交通条件,实时优化协调路径、车速及相位差。

关键词: 交通运输系统工程, 交通信号协调, 动态路径, 动态速度, 车路协同

Abstract:

Based on the real time information of dynamic route volume, initial queue length, and the real-time vehicle and signal controller communication within vehicle infrastructure integration environment, an route based integrated signal coordination control model is proposed to optimize the dual-direction coordinative routes, the dynamic travel speed, and the specific intersection signal timings. Thus overcomes the drawbacks of the conventional coordinated signal control model that uses those parameters as inputs based on the assumptions that the parameters are fixed and the value is optimal. The product of the output volume and the travel speed is employed as the objective of the propose model. The decision variables include the coordinative routes, travel speed and offset. A set of constraints were set up to ensure feasibility and safety of the optimal results. Compared with the results optimized by classical Maxband model and Synchro program, the proposed model can significantly improve the green wave bandwidth, decrease the number of stops, and increase total coordinated benefits. The sensitivity analyses with fluctuation of traffic flow, section length between intersections, maximum speed limit and degree of saturation further demonstrated the potential of the proposed model to be applied in various traffic conditions.

Key words: engineering of communication and transportation system, traffic signal coordination, dynamic routes, dynamic speed, vehicle infrastructure integration

中图分类号: 

  • U491.2

[1] Little J D. The synchronization of traffic signals by mixed-integer linear programming[J]. Operations Research, 1966, 14(4): 568-594.



[2] Liu Y, Chang G L. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage[J]. Transportation Research Part C-Emerging Technologies, 2011, 19(1): 130-144.



[3] 卢凯, 徐建闽, 李轶舜. 进口单独放行方式下的干道双向绿波协调控制数解算法[J]. 中国公路学报, 2010, 23(3): 95-101. Lu Kai, Xu Jian-min, Li Yi-shun. Algebraic method of arterial road coordinate control for bidirectional green wave under signal design mode of one-phase-one-approach[J]. China Journal of Highway and Transport, 2010, 23(3): 95-101.



[4] Parr S A, Kaisar E. Critical intersection signal optimization during urban evacuation utilizing dynamic programming[J]. Journal of Transportation Safety & Security, 2011, 3(1): 59-76.



[5] Hu P, Tian Z Z. A new approach to variable-bandwidth progression optimization[C]//89th Transportation Research Board Annual Meeting, Washington DC, 2010.



[6] Hajbabaie A, Medina J C, Benekohal R F. Traffic signal coordination and queue management in oversaturated intersections[R]. USDOT Region V Regional University Transportation Center Final Report, No. 047IY02, 2011.



[7] He Q, Head K L, Ding J. PAMSCOD: Platoon-based arterial multi-modal signal control with online data[J]. Transportation Research Part C: Emerging Technologies, 2012, 20(1): 164-184.



[8] Abu-Lebdeh G. Integrated adaptive-signal dynamic-speed control of signalized arterials[J]. Journal of Transportation Engineering, 2002, 128(5): 447-451.



[9] Abu-Lebdeh G, Chen H. Exploring the potential benefits of Intellidrive-enabled dynamic speed control in signalized networks[C]//89th Transportation Research Board Annual Meeting, Washington DC, 2010.

[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[11] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[12] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[13] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[14] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[15] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!