吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 818-821.doi: 10.7964/jdxbgxb201403038

• 论文 • 上一篇    下一篇

基于分数阶傅里叶变换的宽带Chirp信号的波达方向角估计

杨巍1,2,石要武2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春130022;
    2.吉林大学 通信工程学院,长春 130022
  • 收稿日期:2012-08-28 出版日期:2014-03-01 发布日期:2014-03-01
  • 通讯作者: 石要武(1954),男,教授,博士生导师.研究方向:信号处理与检测控制.E-mail:shiyw@jlu.edu.cn E-mail:weiyang09@mails.jlu.edu.cn
  • 作者简介:杨巍(1983),女,博士研究生.研究方向:阵列信号处理.E-mail:weiyang09@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51075175).

Broadband direction-arrival estimation of Chirp signal using fractional Fourier transform

YANG Wei1,2,SHI Yao-wu2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022,China;
    2. College of Communication Engineering, Jilin University, Changchun 130022,China
  • Received:2012-08-28 Online:2014-03-01 Published:2014-03-01

摘要: 利用分数傅里叶变换(Fractional Fourier transform,FRFT)时频面旋转的特性,将Chirp信号的能量集中,并在分数阶傅里叶域内接收含宽带Chirp信号参数的方向矩阵,然后再通过窄带DOA(Direction of arrival)算法进行波达方向角估计。理论分析和仿真试验证明了该算法的有效性,并且很大程度地提高了信噪比。

关键词: 信息处理技术, Chirp信号, 波达方向角, 分数阶傅里叶变换

Abstract: We consider the problem of estimating the Directions of Arrival (DOA) of broadband Chirp signal sources using a sensor array. Since the Fractional Fourier Transform (FRFT) can rotate the time-frequency plane, the frequencies of Chirp signals are concentrated by a properly chosen rotational angle, and the direction array is also obtained in FRFT domain. By this way, the broadband DOAs estimation is then successfully processed using the well existing narrowband DOA estimation algorithms. Simulation results demonstrate that the proposed method is quite simple and has much better performance compared to the methods such as the Coherent Signal Subspace method.

Key words: information processing technology, Chirp signal, direction of arrival(DOA), fractional Fourier transform(FRFT)

中图分类号: 

  • TN911.7
[1] Wang H,Kaveh M. Coherent signal-subspace processing for the detection and estimation of angles of arrival of multiple wide-band sources[J]. IEEE Transaction on Acoustics, Speech and Signal Processing, 1985, 33(4):823-831.
[2] Krolik J,Swingler D N. Multiple wide-band source location using steered covariance matrices[J]. IEEE Transaction on Signal Processing, 1989, 37(10):1481-1494.
[3] Hung H,Kaveh M. Focusing matrices for coherent signal-subspace processing[J]. IEEE Transaction on Acoustics, Speech and Signal Processing, 1988, 36(8):1272-1281.
[4] Valaee S,Kabal P. Wideband array processing using a two-sided correlation transformation[J]. IEEE Transaction on Signal Processing, 1995, 43(1):160-172.
[5] Valaee S,Kabal P. A unitary transformation algorithm for wideband array processing[C]∥IEEE Sixth SP Workshop on Statistical Signal and Array Processing, Victoria, BC, 1992:300-303.
[6] Pal P,Vaidyanathan P P. A novel autofocusing approach for estimating directions-of-arrival of wideband signals[C]∥2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2009:1663-1667.
[7] Doron M A, Weiss A J. On focusing matrices for wide-band array processing[J]. IEEE Transaction on Signal Processing, 1992, 40(6):1295-1302.
[8] Liu Zhi-qiang, Gao Xiao-guang, Ma Hong-guang. JDF and SJDF: two DOA estimators for wideband jamming[C]∥2010 IEEE 10th International Conference on Signal Processing, Beijing,China, 2010:327-331.
[9] Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. Journal of Applied Mathematics, 1980, 25(3):241-265.
[10] Zhao Fen-xia,Zhai Xin-duo. The algorithm and error analysis of fractional Fourier transform[C]∥2010 2nd International Conference on Information Engineering and Computer Science, Wuhan, China,2010:1-4.
[11] SejdićE, Djurović I, Stanković L. Fractional Fourier transform as a signal processing tool: An overview of recent developments[J]. Signal Processing, 2011, 91(6): 1351-1369.
[12] Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Processing of the IEEE, 1969, 57(8):1408-1418.
[13] 魏小丽,陈建,林琳.基于空间平滑算法的二维相干源DOA估计[J].吉林大学学报:工学版,2008,38(5):1160-1164.
Wei Xiao-li,Chen Jian,Lin Lin.Two dimefitional DOA estimation of coherent signals based on spatial smoothing method[J].Journal of Jilin University(Engineering and Technology Edition),2008,38(5):1160-1164.
[14] Ma N, Goh J T. Ambiguity function based techniques to estimate DOA of broadband chirp signals[J]. IEEE Transaction on Signal Processing, 2006, 54(5):1826-1839.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313 -1323 .
[2] 贾拓,赵丁选,崔玉鑫. 铰接式装载机倾翻预警方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1762 -1769 .
[3] 朱伟,王传伟,顾开荣,沈惠平,许可,汪源. 一种新型张拉整体并联机构刚度及动力学分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1777 -1786 .
[4] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838 -1843 .