吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 874-881.doi: 10.13229/j.cnki.jdxbgxb201403047

• 论文 • 上一篇    下一篇

指纹识别中未匹配细节点信息的挖掘与利用

李天平1,李亚硕2,王帅强3,张擎2,尹义龙2,任春晓2   

  1. 1.山东师范大学 物理与电子科学学院 济南 250014;
    2.山东大学 计算机科学与技术学院 济南 250101;
    3.山东财经大学 计算机科学与技术学院 济南 250014
  • 收稿日期:2013-11-05 出版日期:2014-03-01 发布日期:2014-03-01
  • 通讯作者: 张擎 (1982),女,博士研究生.研究方向:机器学习,生物识别.E-mail:zhangqing2008@sdu.edu.cn E-mail:sdsdltp@163.com
  • 作者简介:李天平(1965),男,研究员.研究方向:图像处理与模式识别.E-mail:sdsdltp@163.com
  • 基金资助:

    国家自然科学基金项目(61173069,61070097);教育部新世纪优秀人才支持计划项目(NCET-11-0315);山东省优秀中青年科学家科研奖励基金计划项目(BS2013DX047);山东财经大学新教师科研启动基金项目.

Mining and applying unmatched minutiae information in fingerprint recognition

LI Tian-ping1,LI Ya-shuo2,WANG Shuai-qiang3,ZHANG Qing2,YIN Yi-long2,REN Chun-xiao2   

  1. 1.College of Physics and Electronics, Shandong Normal University, Jinan 250014, China 2.School of Computer Science and Technology, Shandong University, Jinan 250101, China 3.School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
  • Received:2013-11-05 Online:2014-03-01 Published:2014-03-01

摘要:

针对基于细节点的指纹匹配中未匹配细节点,定义和提取了细节点比例、紧互对原型对距离、网格集合距离以及Hausdorff距离四个方面的特征,并将其作为辅助特征进行利用,通过在得分级上与一种已有的基于细节点的匹配方法进行融合,实现指纹识别。实验结果表明,融合未匹配细节点中的区分性信息后,指纹识别系统的性能得到了明显的提升,从而也证实了未匹配细节点中的确包含可以利用的区分性信息。

关键词: 信息处理技术, 指纹识别, 未匹配细节点, 得分级融合

Abstract:

Defines and extracts minutiae ratio, tight pair-wise prototype distance, grid set distance, and Housdorff distance from minutiae as four auxiliary features. Fingerprint recognition is realized by fusing with an existed minutiae based matching method at the score level. Experiment results on databases of FVC2000, FVC2002 and FVC2004 for international fingerprint verification competition indicate that fused with the discriminating information of the unmatched minutiae, the performance of the fingerprint system is noticeably promoted. The results also verify that unmatched minutiae truly contain discriminating information.

Key words: information processing, fingerprint recognition, unmatched minutiae, score level fusion

中图分类号: 

  • TP391.41
[1] He X, Tian J, Li L,et al. Modeling and analysis of local comprehensive minutia relation for fingerprint matching[J]. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,2007,37(5):1204-1211.
[2] Feng J. Combining minutiae descriptors for fingerprint matching[J]. Pattern Recognition,2008, 41(1):342-352.
[3] Chen F, Zhou J, Yang C. Reconstructing orientation field from fingerprint minutiae to improve minutiae matching accuracy[J]. IEEE Transactions on Image Processing,2009,18(7):1665-1670.
[4] Jain A K, Feng J. Latent fingerprint matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 88-100.
[5] Cao K, Yang X, Chen X, et al. A novel global feature for minutiae-based fingerprint matching[J]. Pattern Recognition Letters, 2012, 33(10):1411-1421.
[6] Paulino A A, Feng J, Jain A K. Latent fingerprint matching using descriptor-based hough transform[J]. IEEE Transactions on Information Forensic and Security,2013,8(1):31-45.
[7] Zhao Q, Zhang Y, Jain A K, et al. A Generative model for fingerprint minutiae[C]∥In Proc International Conference on Biometrics (ICB), Madrid, Spain, 2013:1-8.
[8] Wand Y L, Ning X, Yin Y.A new fingerprint matching algorithm[J]. Journal of Image and Graphics,2003,8(2):203-208.
[9] Feng J, Ouyang Z, Cai A. Fingerprint matching using ridges[J]. Pattern Recognition,2006,39(1):2131-2140.
[10] Jain A K, Prabhakar S, Hong L, et al. Filterbank-based fingerprint matching[J]. IEEE Transactions on Image Processing, 2000, 9(5):846-895.
[11] Yang J C, Park D S. A fingerprint verification algorithm using tessellated invariant moment features[J]. Neurocomputing,2008,71(10-12):1939-1946.
[12] Queka C, Tana K B, Sagarb V K.Pseudo-outer product based fuzzy neural network fingerprint verification system [J].Neural Networks,2001,14(3):305-323.
[13] Labati R D, Genovese A, Piuri V,et al. Contactless fingerprint recognition: A neural approach for perspective and rotation effects reduction[C]∥IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM),Singapore,2013:22-30.
[14] Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Trans Pattern Anal Mach Intell, 1993,15(9):850-863.
[15] Ren C, Yin Y, Ma J, et al. A novel method of score level fusion using multiple impressions for fingerprint verification[C]∥IEEE Conference on System, Man and Cybernetics Society (SMCS), San Antonio, TX,2009:5196-5201.
[16] Ross A, Jain A K, Reisman J.A hybrid fingerprint matcher[J]. Pattern Recognition, 2003,36(7):1661-1673.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[10] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[11] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[12] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[13] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[14] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[15] 王柯, 刘富, 康冰, 霍彤彤, 周求湛. 基于沙蝎定位猎物的仿生震源定位方法[J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!