吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (6): 1793-1798.doi: 10.13229/j.cnki.jdxbgxb201406039

• • 上一篇    下一篇

基于局部二进制描述SIFT特征的锆石图像配准方法

邱春玲1, 陶强1, 范润龙2, 王培智1   

  1. 1.吉林大学 仪器科学与电气工程学院,长春 130022;
    2.中国地质科学院 地质研究所,北京 100037
  • 收稿日期:2013-07-26 出版日期:2014-11-01 发布日期:2014-11-01
  • 通讯作者: 范润龙(1980-),男,助理研究员.研究方向:质谱仪器控制,大型科学仪器远程控制.E-mail:fanrunlong2003@126.com
  • 作者简介:邱春玲(1963-),女,教授.研究方向:分布式测控,分析仪器.E-mail:
  • 基金资助:
    国家重大科学仪器开发专项项目(2011YQ050069,2011YQ05006907)

Zircon image matching method based on description of SIFT feature by LBP

QIU Chun-ling1, TAO Qiang1, FAN Run-long2, WANG Pei-zhi1   

  1. 1.College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130022,China;
    2.Institute of Geology Chinese Academy of Geological Sciences, Beijing 100037, China
  • Received:2013-07-26 Online:2014-11-01 Published:2014-11-01

摘要: 针对尺度不变特征变换(SIFT)算法计算复杂度高、匹配速度慢的问题,提出一种新的局部二进制模式(LBP)特征描述方法,描述SIFT算法检测出的锆石图像特征点,然后用主成分分析法(PCA)将生成的描述向量降维,最后利用欧式距离法完成配准。新LBP描述方法计算简单,具有旋转不变性和光照不变性,描述向量经过PCA降维以后匹配过程简单快速。实验结果表明:配准效果可以满足仪器自动寻样的需求,并且能够显著提升锆石图像的配准速度、提高仪器运行效率。

关键词: 计算机应用, 图像配准, SIFT算法, 局部二进制模式, 主成分分析

Abstract: In order to solve the problem of high computational complexity and low matching speed of the traditional Scale Invariant Feature Transform (SIFT) algorithm, a new method of feature description using Local Binary Patterns (LBPs) was proposed. This method was used to describe the zircon image feature points detected by SIFT algorithm. The dimensionality of the feature vector was reduced using Principal Component Analysis (PCA), and the descriptor matching was carried out with Euclid Distance. The new description method of LBPs has a more simple calculation, and this algorithm has excellent features of rotation invariance and illumination invariance. The descriptor matching is faster after PCA dimension reduction. Experimental results show that this method meets the requirements of automated sample search, and significantly improves the matching speed of zircon images, improves the efficiency of the instrument.

Key words: computer application, image matching, SIFT algorithm, local binary patterns, principal component analysis(PCA)

中图分类号: 

  • TP391
[1] Lowe D G. Object recognition from local scale-invariant features[C]∥The Proceedings of the Seventh IEEE International Conference on Computer Vision,Indian,1999: 1150-1157.
[2] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[3] Heikkil M, Pietikinen M, Schmid C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3): 425-436.
[4] Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors[C]∥Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Japan,2004: 506-513.
[5] Juan L, Gwun O. A comparison of sift, pca-sift and surf[J]. International Journal of Image Processing, 2009, 3(4): 143-152.
[6] Zhang J, Zhang K, Niu W, et al. SAR image automatic registration based on PCA-SIFT and Mahalanobis distance[C]∥Proceedings of the International Conference on Information Engineering and Applications, London, 2013: 445-452.
[7] Guo Z, Zhang L, Zhang D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing, 2010, 19(6):1657-1663.
[8] Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010,2(4): 433-459.
[9] 李根,李文辉.基于尺度不变特征变换的平面旋转人脸检测[J].吉林大学学报:工学版,2013,43(1):186-191. Li Gen,Li Wen-hui.Face detection under rotation in image plane based on scale invariant feature transform[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(1):186-191.
[10] Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns:Application to face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(12):2037-2041.
[1] 刘富,宗宇轩,康冰,张益萌,林彩霞,赵宏伟. 基于优化纹理特征的手背静脉识别系统[J]. 吉林大学学报(工学版), 2018, 48(6): 1844-1850.
[2] 王利民,刘洋,孙铭会,李美慧. 基于Markov blanket的无约束型K阶贝叶斯集成分类模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1851-1858.
[3] 金顺福,王宝帅,郝闪闪,贾晓光,霍占强. 基于备用虚拟机同步休眠的云数据中心节能策略及性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1859-1866.
[4] 赵东,孙明玉,朱金龙,于繁华,刘光洁,陈慧灵. 结合粒子群和单纯形的改进飞蛾优化算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1867-1872.
[5] 刘恩泽,吴文福. 基于机器视觉的农作物表面多特征决策融合病变判断算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1873-1878.
[6] 欧阳丹彤, 范琪. 子句级别语境感知的开放信息抽取方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1563-1570.
[7] 刘富, 兰旭腾, 侯涛, 康冰, 刘云, 林彩霞. 基于优化k-mer频率的宏基因组聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1593-1599.
[8] 桂春, 黄旺星. 基于改进的标签传播算法的网络聚类方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1600-1605.
[9] 刘元宁, 刘帅, 朱晓冬, 陈一浩, 郑少阁, 沈椿壮. 基于高斯拉普拉斯算子与自适应优化伽柏滤波的虹膜识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1606-1613.
[10] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[11] 车翔玖, 王利, 郭晓新. 基于多尺度特征融合的边界检测算法[J]. 吉林大学学报(工学版), 2018, 48(5): 1621-1628.
[12] 张曼, 施树明. 典型汽车运行工况的状态转移特征分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1008-1015.
[13] 赵宏伟, 刘宇琦, 董立岩, 王玉, 刘陪. 智能交通混合动态路径优化算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[14] 黄辉, 冯西安, 魏燕, 许驰, 陈慧灵. 基于增强核极限学习机的专业选择智能系统[J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[15] 傅文博, 张杰, 陈永乐. 物联网环境下抵抗路由欺骗攻击的网络拓扑发现算法[J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!