吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (5): 1461-1467.doi: 10.13229/j.cnki.jdxbgxb201505013

• • 上一篇    下一篇

超冗余多轴液压振动台的内力耦合控制

魏巍1, 2, 杨志东2, 曲志勇2, 韩俊伟2   

  1. 1.中国工程物理研究院机械制造工艺研究所,四川 绵阳 621900;
    2.哈尔滨工业大学 机电学院,哈尔滨 150001
  • 收稿日期:2013-11-21 出版日期:2015-09-01 发布日期:2015-09-01
  • 作者简介:魏巍(1987-),男,博士研究生.研究方向:多轴振动台.E-mail:iamcoolweiwei@foxmail.com
  • 基金资助:
    国家自然科学基金项目(51205077); 中央高校基本科研业务费专项项目(HIT; NSRIF.2015051)

Internal force coupling control for hyper-redundant multi-axis hydraulic shaking table

WEI Wei1,2,YANG Zhi-dong2,QU Zhi-yong2,HAN Jun-wei2   

  1. 1.Institute of Machinery Manufacturing Technology,China Academy of Engineering Physics,Mianyang 621900,China;
    2.School of Mechatronic Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2013-11-21 Online:2015-09-01 Published:2015-09-01

摘要: 针对传统多轴振动台内力耦合控制策略控制参数复杂、控制效果差的缺点,提出一种基于变形位移和变形力空间的内力耦合控制策略。给出超冗余振动台电液伺服系统的非线性方程及机械部分的单刚体动力学模型,在内力耦合空间分析的基础上,通过内力合成矩阵对合成内力进行闭环反馈补偿,由冗余变形分解矩阵将补偿量分配到各液压伺服阀的输入端。仿真结果显示该算法能有效降低超冗余液压振动台的液压缸出力及耦合内力。

关键词: 流体传动与控制, 超冗余振动台, 内力耦合, 电液伺服系统

Abstract: Traditional internal force coupling control for shaking table is complex and shows poor control performance because of the same control parameter numbers of the cylinders. In order to stabilize the internal force, a novel Internal Force Coupling (IFC) control strategy is proposed based on deformation displacement and force spaces. Nonlinear equations of electro-hydraulic servo system and single rigid body dynamic model of mechanical part of the hyper-redundant shaking table are established with hydraulic and parallel mechanism theory respectively. Under the analysis of internal force space, internal forces calculated by force synthesis matrix are compensated in closed loop and decomposed to the inputs of the servovalves through the redundant deformation matrix. Simulation results show that the IFC control strategy effectively reduces cylinder forces and internal coupling forces of the hyper-redundant multi-axis hydraulic shaking table.

Key words: fluid power transmission and control, hyper-redundant shaking table, internal force coupling, electro-hydraulic servo system

中图分类号: 

  • TH137
[1] 袁立鹏,崔淑梅,卢红影,等.基于定理反馈理论迭代学习的液压角振动台控制策略[J].吉林大学学报:工学版,2011,41(3):676-682. Yuan Li-peng,Cui Shu-mei,Lu Hong-ying,et al.QFT iteration-learning based control strategy of hydraulic angular vibration table[J].Journal of Jilin University(Engineering and Technology Edition),2011,41(3):676-682.
[2] Shen Gang, Zhu Zhen-cai, Zhang Lei, et al. Adaptive feed-forward compensation for hybrid control with acceleration time waveform replication on electro-hydraulic shaking table[J]. Control Engineering Practice,2013, 21(8):1128-1142.
[3] Severn R T. The development of shaking tables—A historical note[J]. Earthquake Engineering and Structural Dynamics,2011, 40(2):195-213.
[4] Plummer A R. A detailed dynamic model of a six-axis shaking table[J]. Journal of Earthquake Engineering,2008, 12(4):631-662.
[5] Tagawa Y, Kajiwara K. Controller development for the E-Defense shaking table[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2007, 221(2):171-181.
[6] Plummer A R. A general coordinate transformation framework for multi-axis motion control with applications in the testing industry[J]. Control Engineering Parctice,2010, 18(6):598-607.
[7] Saglia J A, Tsagarakis N G, Dai J S, et al. Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2009,223(1):53-70.
[8] 何景峰,李保平,佟志忠,等.液压驱动冗余振动台自由度控制及内力协调[J]. 振动与冲击, 2011, 30(3):74-78. He Jing-feng, Li Bao-ping, Tong Zhi-zhong, et al. DoF control and inner force balancing of hydraulically redundant actuated shaking table[J]. Journal of Vibration and Shock,2011, 30(3): 74-78.
[9] 关广丰,熊伟,王海涛,等. 6自由度电液振动台控制策略研究[J]. 振动与冲击,2010,29(4):200-203. Guan Guang-feng, Xiong Wei, Wang Hai-tao, et al. Control strategy of a 6-DOF hydraulic shaker[J]. Journal of Vibration and Shock, 2010,29(4):200-203.
[10] Underwood Marcos A, Keller Tony. Applying coordinate transformations to multi-DOF shaker control[J]. Sound and Vibration,2006, 40(1):22-27.
[11] Jiang Hong-zhou, He Jing-feng, Tong Zhi-zhong. Characteristics analysis of joint space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator[J].Mechanism and Machine Theory,2010, 45(5):722-739.
[12] Chen Yi-xin, Mclnroy John E. Decoupled control of flexure-jointed hexapods using estimated joint-space mass-inertia matrix[J]. IEEE Transactions on Control Systems Technology,2004, 12(3):413-421.
[13] Dasgupta B, Mruthyunjaya T S. Closed-form dynamic equation of the general Stewart platform through the Newton-Euler approach[J]. Mechanism and Machine Theory,1998, 33(7):993-1012.
[14] Jiang Hong-zhou, He Jing-feng, Tong Zhi-zhong. Modal space control for a hydraulically driven Stewart platform[J]. Journal of Control Engineering and Technology, 2012, 2(3):106-115.
[15] Merritt H E. Hydraulic Control Systems[M]. New York: John Wiley & Sons, 1967.
[16] Li H R. Hydraulic Control Systems[M]. Beijing:National Defense Industry Press, 1990.
[1] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[2] 刘建芳, 王记波, 刘国君, 李新波, 梁实海, 杨志刚. 基于PMMA内嵌三维流道的压电驱动微混合器[J]. 吉林大学学报(工学版), 2018, 48(5): 1500-1507.
[3] 刘国君, 马祥, 杨志刚, 王聪慧, 吴越, 王腾飞. 集成式三相流脉动微混合芯片[J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[4] 刘祥勇, 李万莉. 包含蓄能器的电液比例控制模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[5] 王佳怡, 刘昕晖, 王昕, 齐海波, 孙晓宇, 王丽. 数字二次元件变量冲击机理及其抑制[J]. 吉林大学学报(工学版), 2017, 47(6): 1775-1781.
[6] 闻德生, 王京, 高俊峰, 周聪. 双定子单作用叶片泵闭死容腔的压力特性[J]. 吉林大学学报(工学版), 2017, 47(4): 1094-1101.
[7] 刘国君, 张炎炎, 杨旭豪, 李新波, 刘建芳, 杨志刚. 声表面波技术在金纳米粒子可控制备中的应用[J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[8] 王丽, 刘昕晖, 王昕, 陈晋市, 梁燚杰. 装载机数字液压传动系统换挡策略[J]. 吉林大学学报(工学版), 2017, 47(3): 819-826.
[9] 李慎龙, 刘树成, 邢庆坤, 张静, 赖宇阳. 基于LBM-LES模拟的离合器摩擦副流致运动效应[J]. 吉林大学学报(工学版), 2017, 47(2): 490-497.
[10] 张敏, 李松晶, 蔡申. 基于无阀压电微泵控制的微流控液体变色眼镜[J]. 吉林大学学报(工学版), 2017, 47(2): 498-503.
[11] 闻德生, 陈帆, 甄新帅, 周聪, 王京, 商旭东. 双定子泵和马达在压力控制回路中的应用[J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[12] 顾守东, 刘建芳, 杨志刚, 焦晓阳, 江海, 路崧. 压电式锡膏喷射阀特性[J]. 吉林大学学报(工学版), 2017, 47(2): 510-517.
[13] 张健, 姜继海, 李艳杰. 锥型节流阀流量特性[J]. 吉林大学学报(工学版), 2016, 46(6): 1900-1905.
[14] 吴维, 狄崇峰, 胡纪滨, 苑士华. 基于液压变压器的自适应换向驱动系统[J]. 吉林大学学报(工学版), 2016, 46(6): 1906-1911.
[15] 杨华勇, 王双, 张斌, 洪昊岑, 钟麒. 数字液压阀及其阀控系统发展和展望[J]. 吉林大学学报(工学版), 2016, 46(5): 1494-1505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 申桂香, 曾文彬, 张英芝, 吴茂坤, 郑玉彬. 最小故障率下数控组合机床平均维修时间确定[J]. 吉林大学学报(工学版), 2017, 47(5): 1519 -1526 .